

Graduate Institute of Applied Linguistics

Thesis Approval Sheet

This thesis, entitled

Constituent Charting for Discourse Analysis:
 Information Model and Presentation Model

written by

Lars Andrew Huttar

and submitted in partial fulfillment of the requirements for the degree of

Master of Arts in Applied Linguistics

has been read and approved

by the undersigned members of the faculty

of the Graduate Institute of Applied Linguistics.

__
Gary F. Simons, Ph.D. (Mentor)

__
Shin Ja J. Hwang, Ph.D.

__
Robert B. Reed, Ph.D.

__
August 5, 2003

CONSTITUENT CHARTING FOR DISCOURSE ANALYSIS:
 INFORMATION MODEL AND PRESENTATION MODEL

By

Lars Andrew Huttar

Presented to the Faculty of
the Graduate Institute for Applied Linguistics

in partial fulfillment of the requirements
for the degree of

Master of Arts in Applied Linguistics

Graduate Institute of Applied Linguistics
June 2003

Copyright © 2003 Lars Andrew Huttar

All Rights Reserved

THESIS DUPLICATION RELEASE

I hereby authorize the Graduate Institute of Applied Linguistics Library to duplicate this
thesis when needed for research and/or scholarship.

Agreed: ___

(student signature)

Refused: __

(student signature)

ABSTRACT

CONSTITUENT CHARTING FOR DISCOURSE ANALYSIS:
INFORMATION MODEL AND PRESENTATION MODEL

Lars Andrew Huttar

Master of Arts in Applied Linguistics

The Graduate Institute of Applied Linguistics, June 2003

Supervising Professor: Gary F. Simons, Ph.D.

A common task in discourse analysis is the preparation of constituent charts, to make

patterns in a text more visible. Domain-specific computer software could make this task

easier. But in order for the products of such tools to be shareable and reusable in the long

term, the tools must be designed to separate information from presentation, and meet certain

other portability requirements (see Bird and Simons 2003).

This thesis demonstrates such a design, using XML documents to encode the infor-

mation and a DTD to specify the information model. An XSLT stylesheet, representing the

presentation model, is used to generate display charts (presentation forms) from abstract

charts (representations of the information in a constituent chart, without regard to presen-

tation format). The information model and presentation model are then shown to be adequate

for most constituent charts by encoding three example charts, and then generating presen-

tation forms from them that are accepted as adequate by the authors of the original charts.

Consideration is also given to generating abstract charts from annotated texts via stylesheets.

DEDICATION

To my heavenly Father: His grace has brought me safe thus far.

To my wife: for being interested in my interest in XSLT;

and for “doing me good” (Proverbs 31:11-12).

 vii

ACKNOWLEDGEMENTS

I wish to acknowledge the gracious help of my thesis committee. Dr. Gary Simons,

the committee chair, challenged me with inspiring ideas and often drew me back from the

ideal to the possible and necessary. Thank you for taking time for thoughtful review despite

many other demands on your time. Thanks also to Dr. Shin Ja Hwang – for teaching me

charting and chunking, for answering many questions, and for wise advice on writing. My

appreciation is also extended to Dr. Robert B. Reed for contributing from his experience in

software tools for linguistics.

I am grateful to Dr. Robert Longacre and Dr. Stephen Levinsohn for their prompt

answers to my frequent questions about their column charts; to Dr. Pete Unseth, for kind

encouragement, and for offering me “the most important piece of furniture in your office;”

and to Paul Headland, for much prayer and patient encouragement. Thanks also to Kent

Spielmann and Larry Hayashi, who shared with me their enthusiasm and ideas on software

for discourse analysis and linguistic annotation. Thanks are due to my wife Kathy for

detailed editorial work on the format of my References section, performed without the

benefit of separated information and presentation in the bibliographic data.

I also owe gratitude to several friends and family with whose gracious financial help

and encouragement I was able to continue attending the Graduate Institute of Applied

Linguistics these four years. Your investment is bearing fruit in my life. May “he who sows

and he who reaps rejoice together” (John 4:36-38).

August 5, 2003

 viii

CONTENTS

ACKNOWLEDGEMENTS.. vii

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS.. xiii

CHAPTER 1. INTRODUCTION ... 1

1.1 Charting for discourse analysis... 1

1.2 Separation of information from presentation.. 2

1.3 The notion of abstract chart .. 5

1.4 Information models and presentation models in XML... 7

1.5 Methodology and scope .. 9

1.6 Organization of thesis ... 14

CHAPTER 2. REVIEW OF THE LITERATURE ... 15

2.1 Discourse analysis... 15

2.1.1 Scope of this section ... 15

2.1.2 The origins of discourse analysis .. 16

2.1.3 Gleason, Pike, Longacre, and the constituent chart .. 17

2.1.4 Other approaches to discourse charting .. 18

2.2 Use of computers for linguistic annotation and discourse analysis 20

2.2.1 The beginnings of computational linguistics .. 20

 ix

2.2.2 The development of standardized markup languages... 20

2.2.3 The development of XML .. 21

2.2.4 Standard languages for encoding text and annotation .. 23

2.2.5 Existing software projects related to discourse annotation................................. 25

2.2.6 Information models for displays ... 29

2.2.7 XSL presentation models for linguistic data... 30

2.3 Summary... 31

CHAPTER 3. REQUIREMENTS FOR INFORMATION MODEL 32

3.1 Purpose of this chapter.. 32

3.2 Discussion ... 32

3.2.1 Abstract chart information model ... 32

3.2.2 Goals guiding requirements .. 33

3.2.3 Circumscription of purpose... 34

3.3 Requirements .. 35

3.3.1 Requirements for analytic configuration .. 35

3.3.2 Requirements for text structure... 37

3.3.3 Requirements for text content... 39

3.3.4 Requirements for aesthetic configuration ... 42

3.3.5 Requirements for documentation.. 43

3.4 Summary... 44

CHAPTER 4. ABSTRACT CHART INFORMATION MODEL.. 45

4.1 Structure of the abstract chart model .. 45

 x

4.2 Abstract chart DTD... 47

4.3 Sharing of configuration content .. 59

4.4 Summary... 61

CHAPTER 5. PROOF OF CONCEPT ... 62

5.1 Introduction... 62

5.2 Sample abstract chart XML .. 62

5.3 A rendering stylesheet... 71

5.4 Chart for Inga story... 72

5.5 Chart for “Ordeal”... 75

5.6 Chart for “Little Hans”.. 78

5.7 Summary... 82

CHAPTER 6. CONCLUSIONS ... 83

6.1 Generating an abstract chart from annotated text ... 83

6.2 Future directions ... 85

6.2.1 Enhancements to the information model. ... 86

6.2.2 Enhancements to the presentation model.. 89

6.2.3 Beyond the abstract chart model... 90

6.3 Results... 91

REFERENCES CITED... 93

CURRICULUM VITAE... 104

 xi

LIST OF FIGURES

Fig. 1. A simple constituent chart of a Mark Twain passage.. 2

Fig. 2. Overview diagram. .. 8

Fig. 3. Original Inga chart... 11

Fig. 4. Original “Ordeal” chart. .. 12

Fig. 5. Original “Little Hans” chart (first page).. 13

Fig. 6. Information in an abstract chart... 45

Fig. 7. DTD for abstract chart: cc.dtd .. 48

Fig. 8. DTD section for <metadata> element. ... 50

Fig. 9. DTD fragment for analytic configuration: cc-analyconf.dtd 52

Fig. 10. DTD fragment for aesthetic configuration: cc-aesthconf.dtd 54

Fig. 11. DTD section for <body> element. .. 55

Fig. 12. DTD fragment for text content: cc-content.dtd . .. 57

Fig. 13. Sharing configuration files. ... 59

Fig. 14. Swappable configuration files for different purposes.. 60

Fig. 15. Overview of Inga abstract chart XML document. ... 63

Fig. 16. Documentation module of Inga abstract chart... 64

Fig. 17. Analytic configuration module of Inga abstract chart. .. 66

Fig. 18. Aesthetic configuration module of Inga abstract chart.. 68

Fig. 19. Body of Inga abstract chart.. 71

Fig. 20. Display for Inga story rendered from abstract chart.. 73

Fig. 21: Display for “Ordeal” rendered from abstract chart. .. 76

 xii

Fig. 22. Display for “Little Hans” rendered from abstract chart (first page).......................... 79

Fig. 23. Broader framework, including annotated text. .. 85

 xiii

LIST OF ABBREVIATIONS

ACH Association for Computers and the Humanities

ACL Association for Computational Linguistics

AG Annotation graph

ALLC Association for Literary and Linguistic Computing

CELLAR Computing Environment for Linguistic, Literary, and Anthropological
Research

CSS Cascading Style Sheets

DTD Document Type Definition

HTML Hypertext Markup Language

IT Interlinear text

LTR Left-to-right

PDF Portable Document Format

RTL Right-to-left

SGML Standard Generalized Markup Language

SIL Summer Institute of Linguistics (International)

TEI Text Encoding Initiative

 xiv

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WYSIWYG What You See Is What You Get

XCES XML Corpus Encoding Standard

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

 1

CHAPTER 1.

INTRODUCTION

1.1 Charting for discourse analysis

The term discourse analysis, while broadly meaning the study of language in context

(Longacre 1996:1), is used to refer to many diverse fields. This thesis is concerned with the

study of the linguistic structure of whole texts, that is, with textlinguistics. The literature on

discourse analysis and its development is reviewed in chapter 2.

Field linguists performing discourse analysis on texts produce displays of various

types to aid in finding patterns, or to summarize their findings: constituent charts, Thurman

charts, Semantic Structural Analysis trees, Rhetorical Structure Theory analysis trees, and so

on (see Fig. 1 for an example of a constituent chart).

But there is a lack of suitable domain-specific tools to facilitate creation of consistent

displays and to help analysts maximize the benefit of their labor. For instance, at a discourse

analysis workshop attended by twenty participants in fall of 2001, a survey of attendees

revealed that practically all present were using general-purpose tools such as word processors

or even pencil and paper to produce their charts and other displays.1 General-purpose tools

have the advantage of being readily available, but their disadvantages are considerable: they

1 Personal observation. Discourse Analysis Workshop, International Linguistics Center, Dallas, TX, 24 Sept.-5
Oct. 2001.

2

fail to address the problems of maintenance of the data, sophisticated querying, and reuse of

the data by other programs.

 Introducer Preposed Dep Cl Independent Cl

 S-in S-med Conj S P 0 S P 0

1 In a minute a third slave was struggling in the air.
2 It was dreadful.
3 I turned my head away a

moment,
 and when I turned back I missed the king!
4 They were blindfolding him!
5 I was paralyzed;
6 I couldn't move,
7 I was choking,
8 my tongue was petrified.
9 They finished blindfolding him,
10 they led him under the

rope.
11 I couldn't shake off that clinging

impotence.

Fig. 1. A simple constituent chart of a Mark Twain passage.

From Longacre and Hwang (n.d.). Used by permission.

When the software uses proprietary formats, reuse is even more limited as the data

may become inaccessible after five to ten years when the software that reads the format

becomes obsolete (Bird and Simons 2003:3). For the data to remain accessible long-term and

to a wide audience, linguistic analysis tools should use open standards (see also Cover 2003)

so that researchers can access the data without being forced to use one company’s software.

The data takes on even wider usefulness when free, open-source software tools are available

for manipulating it (Raymond 2003).

1.2 Separation of information from presentation

Another fundamental requirement for reuse of data is the separation of information

from presentation. Since humans and computers have very different requirements for the

3

accessibility of information, a chart designed to be visually effective for humans tends to be

difficult for computers to interpret. Moreover, human users themselves have a variety of

needs for presentation of the same information. Therefore, to gain full benefit from data, it

should be encoded in a way that computers can easily process for various purposes, including

flexible rendering into diverse presentation forms. Markup systems make data easy for

computers to read (unless they are proprietary), but only descriptive markup makes the data

accessible as information, so that it can be reworked for new purposes. Markup is defined as

“the property of textual data that has to do with how the information above the character

strings themselves is represented” (Bird and Simons 2003:§3.2). The following comparison

of descriptive markup with presentational markup may elucidate both.2

A typical word processor of today intersperses data with directives that encode italics,

font colors, table line thicknesses, and so on.3 These directives are presentational markup as

distinct from the text content. Italics might distinguish, e.g., a gloss line from the vernacular

text in an interlinear display. This makes the presentation attractive to the human eye, but

difficult for a computer to determine what the function of each piece of data is. For instance,

italics might be used for a number of different purposes, and there is nothing to tell a

computer what italics stands for in a particular display. The Hypertext Markup Language

(HTML, the main language of web pages) is another example of a (mostly) presentational

markup system.4

2 See also Coombs et al. (1987) for a comparison of various types of markup.
3 This markup may take the form of binary codes that are invisible to the user, or that are visible as special
symbols. Coombs et al. (1987) refer to these as concealed and disguised markup respectively.
4 Some have categorized HTML as descriptive markup rather than presentational, and there is some truth to this:

while some tags, such as , are purely presentational, others, such as <h3> , are descriptive. However,
HTML is inadequate as a markup system for linguistic analysis because (a) its vocabulary is fixed: you cannot

4

Descriptive markup takes the other approach, identifying the function of each data

item instead of its appearance. For example, the Extensible Markup Language (XML; see

Bos 1999) uses matching start and end tags with names corresponding to the function of a

datum. In XML, a gloss line would be marked not as italic text but as a series of gloss

elements (using tags such as <gloss>…</gloss>). A computer-readable definition of the

markup system, called a Document Type Definition (DTD), can also be provided. This

combination of descriptive markup with the ability to provide a definition of the markup

system makes the data easily accessible to computer software for many purposes, including

those unanticipated by the author of the data at the time it was created.

However, the processing of data is of limited worth if results cannot ultimately be

presented to humans in a readable form. Thus a descriptive markup system must be

accompanied by a process for rendering the data into a presentation form.5 The Extensible

Stylesheet Language (XSL) serves this purpose by providing a framework for stylesheets that

transform XML documents into presentation forms such as HTML or PDF (Portable

Document Format, a publishing format from Adobe Corporation). Thus, the combination of

descriptive markup with a rendering process gives the researcher the best of both worlds:

high-quality presentation forms, and reusable data.6

create a <relative-clause> tag if you need to describe certain data as such; and (b) its grammar rules are so
lax and so inconsistently observed that it is difficult to write software that interprets it all in a standard way.
5 This point is the last of six fundamental requirements for linguistic computing developed in Simons (1997a)
and Simons (1998).
6 On the other hand, there is the ease-of-use issue: typically, encoding data functionally for later rendering
requires more abstract thought and planning, and appeals less to visual thinkers. Some projects such as Quill
(Chamberlin et al. 1988) and Serna (Syntext 2003) have sought to address this issue by attempting to combine
the visual feedback of a WYSIWYG interface with the flexibility of a descriptive markup language.

5

A presentation model is a specification of how a particular type of document7 can be

rendered into a presentation form. (A presentation form is a particular way a document is

rendered visually. For example, the presentation form of a chart might take the form of a

word processor document, an HTML file, or ink on paper.) A stylesheet is one way to

express a presentation model. An information model, by contrast, specifies for a given type

of document what concepts or information items may or must be present in such a document,

and the relationships among the items. (An information model is also known as a conceptual

model.)

1.3 The notion of abstract chart

An abstract chart (properly abstract constituent chart) is defined as a collection of

the information contained in a specific constituent chart, independent of any particular output

format (such as HTML or PDF). That is, an abstract chart is the set of pieces of information

that a visual chart is intended to communicate. An abstract chart is encoded using descriptive

markup, not presentational markup. The abstract chart model, that is, the information model

for an abstract chart, specifies what pieces of information an abstract chart may or must

include, and how they are to be related to each other. Once an abstract chart document has

been created, a stylesheet can be used to render it into a presentation form.

There are significant benefits to modeling a constituent chart in terms of information

rather than merely presentation form. Information models for discourse displays like

constituent charts will lay the groundwork for the development of widely usable domain-

7 In this thesis, as in markup terminology, document means a set of abstract data (usually conforming in
structure to a specific document type), not a presentation form of that data.

6

specific software tools for discourse annotation, producing highly reusable data. Unlike

general-purpose tools, software specific to discourse annotation will be able to record and use

the information produced in discourse analysis, as opposed to merely recording the

presentation associated with the information. Such software could take advantage of this

information to assist with otherwise tedious tasks like searching for the presence of data in a

particular slot (for example, finding all participant references in dependent clauses in a chart

and presenting statistics on the forms they take), toggling the highlighting of all mainline

verbs, or making structural changes in a tree (for example, moving one constituent up a level,

a time-consuming task if a word processor table or drawing tool is used to model the tree).

An additional use for such an information model would be as a benchmark by which

to evaluate existing or proposed discourse annotation software. The model would give a

framework for determining to what degree the tool or markup system covers the concepts

involved in the task.

Moreover, tools based on information models could offer a variety of views of the

annotation and text (i.e. they could offer a rich set of presentation models). This would allow

discourse researchers with varying interests to collaborate more easily. If Researcher B wants

to build on Researcher A’s results, creating a modified version of A’s display, he or she need

not go through the entire chart and make tedious consistent changes in order to fulfill B’s

different display requirements. Instead, an adjustment of display parameters or a different

view selection can produce a new display based on the same (or supplemented) annotations.

Conversely, Researcher A can then work in any new annotations B has added, without

having to manually convert all of B’s displays back to A’s preferred style.

7

A final benefit of tools based on an information model is the ability to export the

annotations to other useful forms, such as an interchange format (e.g. an annotation graph

[Bird and Liberman 1999a] or XCES annotation framework [Ide and Romary 2003]), or an

archival format used by a text corpus. See Simons (1997a) for more on the benefits of

information modeling over presentation modeling.

1.4 Information models and presentation models in XML

As can be seen from the above discussion, a DTD essentially encodes an information

model for an XML document.8 It does so by specifying what kinds of information (elements

and attributes) are allowed or required in a given document type, and in what relation to each

other they must occur. Moreover, an XSL stylesheet can encode a presentation model, in that

it describes a transformation from the information in an XML document to a presentation

form. In other words, it specifies how XML data will be displayed.

The main products of this thesis are an abstract chart information model (expressed as

a DTD) and a presentation model (expressed as an XSL9 stylesheet). The diagram in Fig. 2

illustrates how the pieces in this puzzle are related.

In this diagram, solid-bordered rectangles represent instance documents (that is,

collections of data specific to a particular chart), while double-bordered rectangles represent

models (which govern charts in general). Rectangles with dotted borders represent processes.

8 To a reasonable degree. DTD’s do have limitations in their expressive power, compared to full programming
languages. Their potential successors, XML Schemas, are more expressive but still not always to the degree
desired.
9 The stylesheet described in this thesis properly consists only of XSLT code, that is, it does not use the
Formatting Objects (FO) component of XSL.

8

text linguistic
analysis

abstract
chart

rendering
presentation

chart

information

model

(DTD)

presentation

model

(stylesheet)

Fig. 2. Overview diagram.

The diagram shows that an abstract chart (an XML instance document) is created as

the result of linguistic analysis,10 starting from a base text. The abstract chart DTD defines

the structure of the abstract chart, ensuring that it conforms to the information model.11 Then

a stylesheet processor renders the information in the abstract chart into a presentation chart,

guided by the rules specified in the rendering stylesheet. The presentation chart may be, for

example, an HTML or PDF document.

How the abstract chart is initially created is beyond the scope of this thesis, but one

may imagine a chart creation software tool (perhaps something like a spreadsheet) that assists

a linguist in producing the abstract chart. Alternatively, a more general linguistic annotation12

software tool might help the linguist mark up the base text with regard to constituent

10 This analysis envisioned here is done by a linguist, not by computer software—at least not until significant
advances are made in computational linguistics—although the process might be facilitated by software.
11 Conformance checking, known as validation, is performed by a validating XML parser, which rejects any
document that lexically or syntactically fails to abide by the constraints specified in the DTD. In the above
diagram, validation may be done when the stylesheet processor opens the abstract chart, before rendering.
12 “‘Linguistic annotation’ covers any descriptive or analytic notations applied to raw language data. The basic
data may be in the form of time functions – audio, video and/or physiological recordings – or it may be textual.”
(Bird and Liberman 1999:1). In this thesis the basic data is assumed to be a written (and electronically encoded)
text. Leech et al (1998:1.1) define annotation, in contrast to representation, as “additional levels of linguistic
information which are added to the orthographic transcription.” Examples of annotation would include
identifying a group of words as a noun phrase, marking a phrase as the subject of a clause, or tagging a text as
belonging to the “hortatory” genre. The CES documentation (EAGLES 2000:0.2.4) divides the two somewhat
differently, considering the marking of linguistic units (e.g. paragraphs, quotations, names, etc.) to be primary

data, not linguistic annotation.

9

structure and other information, whereupon an abstract constituent chart could be generated

from this markup. See §6.1 for further discussion.

A number of promising linguistic annotation and display tools are available or under

development. Many of them use open standards, open-source software, and XML encoding

to separate information from presentation. However, at present none of them facilitates

creation or rendering of a constituent chart for discourse analysis. Design of a suitable

information model for constituent charts would contribute to the development of software to

help discourse analysts and students make constituent charts and get the most out of them.

1.5 Methodology and scope

This thesis focuses on constituent charting, to the exclusion of Thurman charting, tree

diagramming, and other discourse tasks for which software tools are needed (but see §6.1 for

future directions). This focus was based partly on Spielmann (2000) and on my own

experience of the need for intelligent charting tools in a discourse analysis class.13

The approach taken in this thesis is as follows. Three existing constituent charts,

created by three different analysts, were chosen as input to the process: two of them

published, and one of them having been used for some years in teaching discourse analysis.

As such, each could be confidently accepted as an example of a well-formed constituent

chart. The charts are shown in Fig. 3, Fig. 4, and Fig. 5.

Fig. 3 is a chart created by Levinsohn, published in Longacre and Levinsohn’s (1978)

article which recommends this type of chart as an aid to “field analysis of discourse.” The

13 Note that this thesis only lays some groundwork for the design of such tools. Further work will be needed
before constituent charting software is actually available to be used by non-computer specialists.

10

chart demonstrates pre-analytical14 techniques described in the article, using an Inga

language text with interlinear English glosses. Fig. 4, a chart by Longacre (1992), gives a

simple display of a narrative text in English, “Ordeal in the Winter Woods.” The third chart,

part of which is shown in Fig. 5, is the most complex. This chart of an English short story,

“Little Hans,” was developed by Hwang (1997) over several years as an example for

teaching discourse analysis to graduate students.

These three original charts were taken as representative of constituent charts currently

in use for analyzing discourse. A list of requirements for the abstract chart model was then

created based on the information presented in the original charts. Based on these require-

ments, an abstract chart information model was designed that would be capable of encoding

that information. A DTD was then created to encode this information model.

Each chart was then encoded into an XML document conforming to the abstract chart

model DTD. A stylesheet was written in XSL to render the abstract chart instance documents

into presentation forms coded in HTML. After each chart was rendered, the resulting HTML

display form was sent to the author of the original chart for evaluation to answer the

question, “Does the rendered display chart still communicate clearly the information that the

original chart was meant to convey?” Once all the original authors were satisfied with the

quality of the rendered display charts, the abstract chart information model (DTD) and

presentation model (XSL stylesheet) were judged adequate. During this process, corrections

or updates were made to each of the abstract charts and the models according to the wishes of

the authors until each author was satisfied with his or her chart.

14 Stephen Levinsohn (personal communication, 2003) notes that the constituent chart is presented in workshops
as a pre-analytical tool, that is, it precedes discourse analytical decisions. The chart does not of course precede
grammatical analysis, some of which is required before constituents can be identified.

11

Fig. 3. Original Inga chart.

Excerpted from Longacre and Levinsohn (1978). Used by permission.

12

Fig. 4. Original “Ordeal” chart.
Excerpted from Longacre (1992). Used by permission.

1
3

Fig. 5. Original “Little Hans” chart (first page).

Excerpted from Longacre and Hwang (n.d.). Used by permission.

14

1.6 Organization of thesis

After a brief review of the literature (chapter 2), the requirements for the abstract

chart information model are presented (chapter 3). In chapter 4, an information model that

meets these requirements is presented (expressed as a DTD). Chapter 5 shows and discusses

some example sections of an XML-encoded abstract chart document, briefly describes the

XSL stylesheet that guides the rendering process, and then presents the rendered display

charts. Finally, chapter 6 reviews what has been accomplished, including an experiment in

generating an abstract chart from an annotated text, and suggests directions for further work.

15

CHAPTER 2.

REVIEW OF THE LITERATURE

Before requirements for an abstract chart model are presented, a brief review of

background literature on discourse analysis and discourse annotation software will help set

the stage.

2.1 Discourse analysis

2.1.1 Scope of this section

The phrase discourse analysis covers a very broad and diverse field of study.

Schiffrin et al. (2001) groups the many approaches to discourse into three categories: (1)

anything beyond the sentence; (2) instances of language in actual usage as opposed to

constructed examples; and (3) social use of language with the result of promoting ideologies

or power structures.

This thesis is concerned only with (1) and (2) above: discourse analysis in the sense

of textlinguistics, that is, linguistic analysis of a whole, naturally-occurring text, including

structure above the sentence level. In particular, the development of two specific types of

column charts used in discourse analysis, namely Thurman charts and Longacre-Levinsohn

charts, is traced in this literature review; other branches of discourse analysis are beyond the

scope of this study.

16

2.1.2 The origins of discourse analysis

Linguistics under Bloomfield (and later Chomsky) long ignored or gave scant

attention to the structure of language above the level of the sentence (Harris 1952, Longacre

1979). But in 1952, Zellig Harris began to buck this trend by developing a method of

“discourse analysis” that examined connected sequences of sentences in a text to discover

equivalence chains, and thereby, to unearth its content structure. While Harris’s work was

influential, his method has not continued to be widely used. Another tributary to discourse

analysis, from the field of narratology, came from Propp (1928) and Dundes (1962-64) who

examined the structure of folktales in a way that, as Lakoff (1964) pointed out, could be

generated by a simple grammar. In literary theory, Benveniste (1974) described, among

many other topics relevant to discourse, the significance of the choice of pronouns and

tense/aspect in narrative.

The first forays into discourse grammar, at least on this side of the Atlantic, were

attempted by Bible translators, in the process of documenting the grammars of Native

American languages – starting with Loriot (1970) (written in 1958), and Pickett (1959).

In 1964, several publications urged the consideration of discourse-level structure.

Longacre (2002, personal communication) credits Weinrich and Gleason with being the key

pioneers of discourse analysis in Europe and in the United States, respectively. Weinrich

(1964) described a need for a “textual linguistics” (Partridge 1995:6, Longacre 1993:51), to

address a theoretical gap. Gleason’s 1964 article made the radical assertion that a paragraph

structure grammar could account for patterns in his field data more simply than a sentence

grammar. Other articles approached beyond-the-sentence structure from the points of view of

17

poetry (Bateson 1964), composition (Pike 1964a), tagmemics (Pike 1964b), generative

grammar (Lakoff 1964), and computational linguistics (Jacobson 1964, Harper 1964).

2.1.3 Gleason, Pike, Longacre, and the constituent chart

Gleason and his successors (Taber 1966, Cromack 1968, Stennes 1969) went on to

produce the first full-fledged discourse grammars of languages, again, in the pursuit of

quality bible translation. Pike’s (1954, 1964b, 1967) and Longacre’s (e.g. 1965) work on

tagmemics laid further groundwork for a major school of discourse analysis within American

linguistics (Grimes 1975). This school focused on analyzing and classifying surface structure

patterns found in text. Longacre was a leading contributor in this movement, authoring or

editing volumes of discourse studies of languages in the Philippines (1968), Mexico (Reid et

al. 1968), Papua New Guinea (1972), South America (Longacre and Woods 1976-77), and

Africa (1990), and applying methods of discourse analysis to dozens of languages around the

world (see Longacre 1996:27). Longacre and his colleagues, including Stephen Levinsohn,

have conducted numerous field workshops aimed at encouraging the application of discourse

analysis to languages under study. Out of these workshops emerged a method of text charting

designed to make discourse patterns more easily visible (Longacre and Levinsohn 1978). The

Longacre-Levinsohn chart, also known as a constituent chart (Hohulin 2001), was an

extension of earlier clause analysis charts (Longacre 1964:46). Constituent charts consist of

columns corresponding to clause or sentence constituents, arranged in the order in which the

constituents most commonly occur. Constituents are arranged in the same linear order in the

chart as they occur in the text; if any constituent occurs out of the usual order, it cannot be

placed in its usual column, and therefore stands out visually as a variation requiring further

18

study. For example, if an SVO clause appears in a mostly-VSO text, either the S or the V

constituent must be displaced from its usual column. Patterns of such displacements can be

detected more easily when they are laid out, aligned in a chart.

The method of using a constituent chart as an aid to analysis is presented in Dooley

and Levinsohn (2001), and in Hwang (1993) in modified form. Hwang (1997) and Longacre

and Hwang (1994) give examples of the use of a constituent chart in the analysis of specific

narrative texts.

2.1.4 Other approaches to discourse charting

Gleason (1968) and his successors established an important beachhead into analyzing

discourse by exploring the distinctions among kinds of information communicated by various

parts of a text (Grimes 1975:33). For example, material in a discourse may refer to events,

participants, or background information. The separation of material into these “bands” of

information is referred to as band analysis, which Longacre (1981) later developed into

spectrum analysis. The latter organizes bands of information into a cline from most dynamic

to most static, based in part on Hopper and Thompson’s (1980) groundbreaking work on

“transitivity parameters.”

Thurman (1975) and Grimes (1975:82ff) developed Gleason’s and Cromack’s

diagrams into the so-called Thurman chart, which consists of columns corresponding to the

bands of information contained in the text under study. Although Thurman charts resemble

constituent charts in their column-oriented layout, unlike constituent charts they are not

constrained to preserve the order of the original text. Thurman charts are beyond the scope of

this thesis, but some possibilities for supporting them are presented in §6.1.

19

While constituent charts and Thurman charts typify table-like displays, other

discourse analysis displays use a tree diagram of some sort. One example is the diagramming

of interclausal and intersentential relations (Longacre 1996:51-122), showing the constituent

structure of a text and the relations between constituents. This information may be displayed

as a tree or as an indentation diagram (see for example Hwang 1989), laid out horizontally

(with the tree’s root on the left or right). Semantic structural analysis (Beekman, Callow, and

Kopesec 1981) uses similar tree diagrams to show a modified form of interclausal relations.

Another kind of tree diagram, in which the display is vertical (root is at the top), is the kind

used for rhetorical structure theory (RST) displays (Mann and Thompson 1986).

The information in these tree-shaped displays shares several common features, such

as hierarchical containment, slot and class information,15 and a nuclear vs. peripheral

distinction for constituents. For this reason it is likely that a single information model and

software tool with multiple configurations could be useful for working with all of them.

Another type of discourse analysis display does not consist of an arrangement of the

text, but of a presentation of statistics or results of computations on parts of the text. An

example would be topic continuity statistics for participants in a text (see Givón 1994).

 However, these other approaches are beyond the scope of this thesis. Further

information on discourse charting software needs can be found in Spielmann (2000).

15 Each unit in such a tree has both slot and class (Longacre 1996:269ff; definitive statement in Pike 1967). For
example, in an intersentential relations diagram, a given unit may fill the slot of “Simul Thesis 1” with respect
to its parent unit, while having a class of “Sequence Paragraph.” A unit’s class determines what slots are
available for its constituents (see Longacre 1996:120 Diagram 4.2).

20

2.2 Use of computers for linguistic annotation and discourse analysis

This section reviews the development of the use of computer software and text

markup for research on language and literature in general, and discourse analysis in

particular.

2.2.1 The beginnings of computational linguistics

Almost as long as computers have been used in research, they have been used to

facilitate the study of language and literature. In 1949 Father Roberto Busa, considered the

“founder of literary and linguistic computing” (Vetch 2001), began pioneering techniques

using card-sorting machines to encode a complex text corpus. His final product was a

comprehensive concordance of the works of Thomas Aquinas. By the 1960’s the use of

computers in the humanities was widespread (Harbin 1998; see also Grimes 1965).

2.2.2 The development of standardized markup languages

From early on, a critical consideration was how to most effectively encode the

language data that was to be studied; in other words, what kind of markup should be used. As

the amount of encoded language data increased, the potential benefits of being able to reuse

that data became more obvious, so researchers needed ways to make markup more

portable—that is, less dependent on a particular computing environment for its use. As was

discussed in chapter 1, descriptive markup made encoded data more reusable by separating

information (the more broadly useful part of the data) from presentation (the more

environment-specific part). The movement toward using descriptive markup is said to have

begun with a presentation by William Tunnicliffe, of the Composition Committee of the

21

Graphic Communications Association (GCA). This committee developed the so-called

“GenCode(R)” concept, advocating generic coding, that is, descriptive markup (Goldfarb

1996).

The generic coding concept was developed into Generalized Markup Language

(GML) by Charles Goldfarb, Edward Mosher and Raymond Lorie (first published as

Goldfarb 1973). Besides descriptive markup, GML also provided formal document type

descriptions16 (Goldfarb 1996). GML later served as the basis for the creation of the more

powerful Standard Generalized Markup Language (SGML), which became a draft standard

of the American National Standards Institute (ANSI) in 1980, and an official standard of the

International Organization for Standardization (ISO) in 1986 (SGML Users’ Group 1990:§3).

SGML has been used successfully in many projects, especially in text processing.

In 1990, Tim Berners-Lee began working on the World Wide Web initiative at the

European Organization for Nuclear Research (CERN). For web page markup he developed

HTML to encode hypertext constructs and document elements. HTML was designed as an

“SGML application,” that is, a language conforming to SGML rules. The first formal

specification for HTML was released in 1995 (Berners-Lee and Connolly 1995), by which

time HTML was already being used on thousands of web sites (“The Stats Map of Net

History,” Gromov 2002:8).

2.2.3 The development of XML

As the World Wide Web mushroomed in popularity, the question of what markup

language standards would be used for data exchange became pressing. SGML was

16 The basis for SGML’s document type definitions.

22

considered by many to be too complex and difficult to implement for widespread application

on the Web. HTML, while simpler than SGML, was not extensible: it did not allow an

application developer to define new markup vocabularies (tag sets) to describe new kinds of

data. Moreover, widespread informal implementation and nonstandard enhancement of

HTML made the language very difficult to check for strict conformance to a DTD, one of the

important benefits of a standard markup language.

To fill the need for a simpler but extensible markup language for the web, the World

Wide Web Consortium (W3C) developed XML, a subset of SGML. The XML 1.0

specification17 was released in 1998 (Bray et al. 2000). In the five years since then, the usage

of XML has far outpaced that of SGML, especially in the hard sciences and in the business

world.18 Many software tools for working with XML are already available at little or no cost.

Three further developments in the world of XML deserve mention. One is the

Extensible Stylesheet Language (XSL). In the information vs. presentation paradigm, where

XML is used to encode information, XSL is a language for expressing the presentation model

needed to provide displays of that information. XSL Transformations (XSLT), a subset of

XSL, is used for that purpose in this thesis. XSLT became a W3C Recommendation in 1999

(Clark 1999).

17 The simplicity of XML relative to SGML is reflected in the size of their respective specifications: twenty-six
pages versus over five hundred (Sol 1999).
18 One indication of XML’s widespread use is that a web search engine gives some 19 million results for the
term XML, while SGML nets less than a tenth of that number (Google 2003). InfoWorld, a business magazine,
gives over a hundred times more results for a search on XML than on SGML (InfoWorld 2003). A search of
articles in the journal Literary and Linguistic Computing shows that in the last three years, four articles have
mentioned XML, and one, SGML (Association for Linguistic and Literary Computing 2003). Another indicator
is the decision of both the Text Encoding Initiative (TEI) and the Corpus Encoding Standard (CES) to support
XML. The reasons cited: “in order to make use of the many XML tools becoming available” (TEI Consortium
2001) and “because the XML framework provides us with means to go well beyond the capabilities of SGML”
(Ide and Suderman 2002).

23

Another important development for XML is the advent of more sophisticated systems

for describing XML document types and their constraints. XML Schema, a fairly new

Recommendation (Fallside 2001) from W3C, offers greater functionality than DTDs in

several areas. One of the most important for interchange of data throughout a diverse

research community is that of extensibility. XML Schema allows element types in one

schema to be extended in another.19 XML Schema is not however used in this thesis, for

reasons discussed in §6.1.

The third development with implications for interchange of data is the Semantic Web.

In any diverse and changing research community, there will probably always be a variety of

terminologies (or tag sets) used to encode any given type of data, resulting in confusion when

an attempt is made to compare or combine data from multiple sources. As noted by Bird and

Simons (2003:17), if terminologies are mapped onto a common ontology of terms, different

encodings can in principle be converted into mutually-compatible forms. The Semantic Web,

using the Resource Description Framework (RDF) and the Web Ontology Language (OWL),

provides a means of defining ontologies and describing mappings between terminologies

(Miller 2003). RDF became a W3C Recommendation in 1999 (Lassila and Swick 1999).

2.2.4 Standard languages for encoding text and annotation

SGML and XML are general-purpose markup languages; in themselves, they provide

only a language skeleton and the means to fill in the blanks. They are often described as

“meta-languages,” i.e. languages for describing languages. In order for them to be used for a

19 Certain types of extension are possible with DTDs, but this is achieved either through significant complexity
(as with the TEI “Pizza Chef” [Burnard 1999]), or by losing control (within the DTD) of constraints on the
extensible parts (Dashofy et al. 2001:3.2).

24

specific application, a vocabulary (tag set) and structure must be specified, typically using a

DTD or other schema description. The Text Encoding Initiative (TEI) and one of its

refinements, the Corpus Encoding Standard (CES), define two such SGML languages.

In 1987, the TEI was begun by a group of associations concerned with computing and

the humanities in order to address the need for specification of a standard markup language

for the encoding and interchange of text (TEI Consortium 2003b). The main product of the

TEI, released in 1994, was the TEI guidelines, known as TEI P3 (Sperberg-McQueen and

Burnard 1994): Detailed recommendations for the encoding of “textual material of all kinds

in all languages from all times” (TEI Consortium 2003a). TEI P3 included a large, modular

SGML DTD, consisting of core tag sets and additional, optional ones tailored to the needs of

specific applications such as language corpus creation and textual criticism. While the TEI

was originally designed in SGML, it has now been made available in XML as well. The

current version of the TEI Guidelines is P4 (Sperberg-McQueen and Burnard 2002).

While the TEI provided comprehensive guidelines for encoding practically any kind

of text, CES was created to focus more specifically on the needs of language corpus creation.

CES is TEI-conformant (EAGLES 2000). It consists of a selection of TEI tag sets relevant to

corpus encoding, plus extensions for aspects not covered by TEI. Because it is much smaller

than TEI, is geared toward the encoding of text and annotation for linguistic corpora, and

covers large discourse units as well as morphosyntactic units, CES is a good candidate for a

standard encoding to use for discourse analysis. If CES were made available as an XML

application instead of SGML, it would be even more useful, given the availability of XML

tools. The Corpus Encoding Standard for XML (XCES) is now under development and is in

25

beta stage (Ide and Suderman 2002). For extensive discussion of the merits of TEI and

(X)CES, see Bański (2001:§1-3).

There are many other SGML and XML languages for encoding annotated text, but

TEI and CES seem to be the ones with the most widespread acceptance as standards.

2.2.5 Existing software projects related to discourse annotation

In this section we review a few of the software projects, conceptual models and

coding schemes relating to discourse annotation and display that have been worked on so far.

The potential list is very large, so many significant projects are not covered here. For surveys

of existing annotation models and tools, see Carletta et al. (2002:§3), Bird and Liberman

(2001, 1999:§2), or Leech et al. (1998:§3.6.9).

None of these tools specifically supports discourse analysis constituent charts, either

in modeling or by rendering into a presentation form. However they are related to this thesis

insofar as they involve software tools for linguistically annotated text, usually for discourse

annotation. The emphasis for most of them though is on discourse in the sense of spoken

dialogue.

The Multilevel Annotation Tools Engineering (MATE) project, sponsored by the

European Commission’s Telematics/Language Engineering Programme, was completed in

2000 (Dybkjær and Bernsen 2000). The main results of the project are the MATE markup

framework and the MATE workbench, the latter consisting of open-source software tools

that are freely available for download. The MATE markup framework is a proposed standard

for markup of spoken dialogue corpora, and incorporates concepts from more than sixty

existing coding schemes from several different encoding levels. This framework is claimed

26

to be the most comprehensive such framework in existence. The MATE project provides a

conceptual model within which users can define custom “coding schemes,” including tag

sets. Ready-to-use “best practice” coding schemes are also included. The model is a rich one,

allowing constituent relationships to be expressed both by nesting of elements and by links

(Bird and Liberman 1999b). The MATE Stylesheet Language (MSL), similar to XSL, allows

users to design stylesheets for new visualizations (views).

Alembic Workbench (Day et al. 1997) is a set of fairly WYSIWYG tools for semi-

automatic annotation of multilingual text, for the purpose of annotating large corpora

quickly. The software is available for download.

LinguaLinks (Stutzman 2003) is a set of integrated tools from the Summer Institute of

Linguistics (SIL International) for “word analysis,” built on the object-oriented infrastructure

of the Computing Environment for Linguistic, Literary, and Anthropological Research

(CELLAR) (Simons and Thomson 1995). LinguaLinks facilitates interlinear annotation of

texts, assisted by morphological parsing and a lexical database. The tools keep data

consistent by linking to objects everywhere instead of copying data. Moreover, because the

data is stored independently of any particular presentation, multiple views of the data are

possible, depending on the task: entering a record, browsing many data records, or exporting

a presentation for publication.

For an import/export interchange format, LinguaLinks uses PTEXT (“Parsed Text”),

another proposed standard for SGML encoding of (morphologically) analyzed text. PTEXT

was designed as a conceptual model for parsed text, and for “interchange of parsed texts

27

among natural language processing applications” (Simons 1997b). Two successor projects,

FieldWorks and WordWorks, expand on the functionality of LinguaLinks.

The annotation graph (AG) formalism (Bird and Liberman 1999b) is less a

conceptual model for annotation than a simple “common conceptual core” framework for

representing more complex annotations. AGs are defined simply as “networks consisting of

nodes and arcs, decorated with time marks and labels,” and are primarily intended for

annotating linear signals such as audio. AG aims to address problems of complexity said to

be inherent in the richer annotation formats, such as the difficulty of maintaining coherence

of recursive annotation structures in real time over large documents. A formal algebra on

AGs is presented, allowing the authors to demonstrate by proof that certain desirable

properties of AGs (related to consistency) are preserved over operations such as set union

(combining sets of annotations). It is claimed that despite its simplicity, the AG formalism is

expressive enough to represent most kinds of annotation currently being done with other

models. Bird and Liberman argue convincingly that maintaining coherence of large

annotation networks can be done much more efficiently if they are modeled as AGs. What is

less clear is whether other operations, such as following links in a hierarchy, becomes

significantly more difficult since hierarchical connections are not explicitly represented in the

AG formalism. An open-source toolkit has been developed as a basis for annotation and

transcription software based on AG, and several tools have already been implemented using

the toolkit (Bird et al. 2002).

A related project, based on an extension to AG, is Architecture and Tools for

Linguistic Analysis Systems (ATLAS), undertaken by the National Institute for Standards

28

and Technology (NIST), the Linguistic Data Consortium (LDC), and MITRE Corporation.

The ATLAS approach is to interpose a logical layer between applications and encoding

schemes, so that applications can be developed independently of the burden of supporting

multiple encoding formats. The intermediate layer “defines an abstract annotation model that

associates structured data to regions that have been identified in a signal. The data model

defines core ontologies that can then be manipulated by applications” (NIST 2003; see also

Laprun et al. 2002).

Multilinear Discourse Analysis (MDA) is not an annotation tool, but a tool for

producing displays from annotated text (Quick 1996). The input to MDA is a text with

Standard Format Marker (SFM) annotations encoding participant reference information.

MDA then computes quantitative measures such as topic persistence and referential distance,

and outputs tables showing the results.

RSTTool is an open-source tool that facilitates WYSIWYG annotation of texts

according to rhetorical structure theory principles (O’Donnell 2000). The annotations are

stored in RS2 format and RSTTool can be used to display them in configurable ways. The

tool can also compute statistics over annotations on a text, e.g. the prevalence of particular

relations.

Many other tools and models for linguistic annotation are available. As has been

mentioned, there are over sixty coding schemes for spoken dialogue corpus annotation alone

(Dybkjær and Bernsen 2000:1). Dealing with incompatible coding schemes is therefore a

major hurdle in the development of specialized software (Bird and Simons 2003:§2.2). Many

projects (including MATE, XCES, AG, ATLAS, and PTEXT) aim to provide an interchange

29

format between other formats or applications. It is clear that any software designed to be able

to interoperate with other software on annotated text data must take into account the need to

be able to import and export data in a wide variety of formats, without loss of information.

Using a sufficiently general interchange format may be a way to solve this problem, though

making this solution extensible without losing compatibility will require something like web

ontologies.

2.2.6 Information models for displays

A few publications focus explicitly on the information model of a linguistic display.

Schmidt (2002) is one: As part of the EXMARaLDA20 system, he develops a model of

interlinear text (IT) display. Schmidt also proposes a rendering process similar to the one

proposed in this thesis for constituent charts (Fig. 2). In his process, an instance of an abstract

IT document is produced programmatically from annotated text data, and the IT document is

then transformed (by a Java program) into a presentation form (Schmidt 2002:Fig. 25).

Another model of IT display is developed in Bow, Hughes, and Bird (2003). In their

proposed processing model two transformation steps are involved (see Bow, Hughes, and

Bird 2003:Fig. 29). An abstract IT representation containing the text data is transformed via

one of several XSL stylesheets (chosen according to the style of display desired) into a

surface representation in which the parameters of the display are specified; and the surface

representation is transformed (again via one of several stylesheets) into a presentation form

in some formatting/layout language.

20 “EXtensible MARkup Language for Discourse Annotation.”

30

In order to avoid confusion of terminology, it may be worthwhile to note that Bow,

Hughes, and Bird’s abstract IT representation is roughly, but not strictly, at the same

abstraction level as the abstract constituent chart described in this thesis. Their abstract IT

representation is somewhat more abstract than the abstract chart (since the former does not

specify ordering and selection of slices of data [IT rows]), but is less general than an

annotated text (as referred to in §6.1), in that it is limited to information required for IT as

opposed to general linguistic annotation.

A third investigation of linguistic displays is found in Weber (2000), where the

possible range of content and intricacies of presentation for the “linguistic example” are

explored. While Weber does not present a conceptual model as such, he proposes a

framework for processing and rendering linguistic examples, and gives many suggestions for

useful features of a presentation form, especially for interactive media.

2.2.7 XSL presentation models for linguistic data

The OpenText.org project (O’Donnell, Porter, and Reed 2001) is one of several using

XSLT stylesheets to display views of XML encoded data. Its goal is to provide annotated

Greek texts, along with open source software tools for analysis and viewing. Annotations

include discourse, grammatical, and other features. In one demonstration, XSLT stylesheets

give twelve different views of a single XML annotated text: for example, displaying the

constituents of each clause, or the distribution of participants. Some of the HTML output of

these stylesheets includes interactive features implemented in JavaScript, so that the view can

be tailored instantly without re-running the stylesheet processor.

31

XSL stylesheets provide a standardized way of defining a presentation model that

allows the developer and the user to take advantage of widely available tools, thus reducing

the complexity and increasing the portability of applications and documents.

2.3 Summary

This chapter has reviewed some of the relevant literature on discourse analysis, on the

development of the use of computers for annotation of text, and on software for discourse

analysis and linguistic annotation. The next chapter presents requirements for an abstract

constituent chart information model.

32

CHAPTER 3.

REQUIREMENTS FOR INFORMATION MODEL

3.1 Purpose of this chapter

The form and purpose of a constituent chart has already been described. An abstract

chart, as mentioned in §1.2, is a document providing the information content and layout of

such a chart, independently of any particular output format (such as HTML or PDF). This

chapter21 describes what is required from an abstract chart, in order to develop an abstract

chart information model that satisfies those requirements.

3.2 Discussion

3.2.1 Abstract chart information model

An abstract chart plays a mediating role between a particular annotated text and a

rendered presentation of that data in a particular format. In Simons’s (1997) terms, an

abstract chart model is a conceptual model of a chart, for which the visual model would be a

stylesheet that produces a document in HTML, PDF, or some other presentation format.

Each abstract chart could be used to generate multiple presentation forms: for

example, one for computer screens (with color and interactive buttons), and another for

21 The form of this chapter is based on Simons (1993).

33

black-and-white printouts. The former might be encoded in HTML with JavaScript, the latter

in PDF.

3.2.2 Goals guiding requirements

The first goal guiding requirements for the abstract chart model is to be able to

encode the information typically contained in a constituent chart, so that a researcher may

encode a given chart into an abstract chart and then render it into a presentation form. A

second goal is to ensure that the abstract chart (and, to the degree reasonable, the presentation

form) will be “portable,” that is, will continue to be useful for the long term, and will be

accessible to others with different computing environments. Portability requirements cover

issues of content, format, discovery, access, citation, preservation, and rights. These issues,

along with recommended best practices, are detailed in Bird and Simons (2003).

It has been pointed out earlier that in order for linguistic software tools and the data

produced by them to be reusable, they must separate information from presentation. In the

case of constituent charts, the chart is in some sense a presentation element, relative to a text

which the researcher has marked up (annotated). The annotated text includes information

such as a certain range of words being marked as the subject of an independent clause; the

corresponding abstract chart would contain the information that this range of words should

appear in a particular column of a table. However, relative to the final presentation form, the

abstract chart is information. The aforesaid range of words in the abstract chart would be

rendered into the presentation form with formatting codes, e.g. in HTML, something like

<td>Little Hans</td>

in the appropriate context to be displayed in the correct column in a web browser table.

34

Thus, as the set of information corresponding to a display, an abstract chart is not

designed to be the primary source of linguistic analysis (although it could serve as such in the

absence of a better arrangement); the primary source of analysis would ideally be an

annotated text. Instead, the abstract chart contains information about the structure of the chart

display.

3.2.3 Circumscription of purpose

This section clarifies the purpose of the abstract chart model by stating what is not

part of that purpose. The goal for the abstract chart model is not to encapsulate every kind of

information that has ever been encoded in a constituent chart. Rather it is to cover the

commonly used notions. In addition, the abstract chart model is not required to store the

information necessary to reproduce every visual aspect of the original charts. Some of the

visual nuances in the charts do not fit well into a formal model where information is mapped

systematically onto display forms.

Rather than reproducing presentation exactly, the aim is for the abstract chart model

to be able to contain the information communicated by the original chart, in such a way that

the presentation model can render it into a presentation form that satisfactorily communicates

the same information.

As a final note, the following list covers basic requirements, which have actually been

implemented in this project. Other potentially desirable features are considered in §6.1.

35

3.3 Requirements

In software development, a requirements document facilitates collaboration by

providing a basis for discussion and enabling the consensus-building on what a piece of

software should do. This allows those involved to identify and address weaknesses in the

understanding of the problem. Requirements make it possible in principle to design software

to do the things it has been agreed that it should do, and later to determine whether the

software actually does what it should.

These requirements are not intended to specify how the information must be modeled;

in particular, they do not prescribe the structure or design of a DTD. Rather, the requirements

specify what information must be modeled in order for other parts of an application (e.g. a

rendering process) to be able to do what they are designed to do.

The following requirements are grouped into categories by subject area, but the

requirements are numbered continuously without regard to grouping. After its number, each

requirement statement begins with a name in bold type, followed by a description of what

that requirement entails.

3.3.1 Requirements for analytic configuration

The abstract chart model must contain the information necessary to produce a table

(or some equivalent form) in the output with text in columns that are labeled with the names

of certain constituents. We are categorizing the column information as “analytic

configuration” since it is based on analytical decisions (generally about the language, and

perhaps the text genre, under study), such as the most common order of constituents in a

clause or sentence.

36

1. Columns. The model must include a list of columns.

a. Name. Each column has a linguistically relevant name, to be displayed in the

header row of the output chart.

b. Order. The columns have a defined logical order with respect to each other,

within their parent column group (or within the chart as a whole, if they are not

within a group). Currently, logical order is assumed to correspond to a left-to-

right rendering order (but see requirement 22 in §6.1).

c. Width. It is desirable to be able to specify a preferred width for each column, as a

percentage of the total table width. For example, in a given language and genre of

text for which independent clauses are far more common than postposed clauses,

a well-balanced table should have a wider column for independent clauses and

their constituents. If unspecified, the rendering process will decide the width of

the columns; but it would be desirable not to have to depend on this because as

automatic table renderers (such as Microsoft Internet Explorer rendering an

HTML table) currently go, they are unlikely to estimate optimal widths for

columns very well when there is a lot of text.

d. Abbreviation. A column may need to have an abbreviation different from its

caption, by which it can be referred to in user-visible text in the body of the chart.

For example in Fig. 5, sentence 3, “[in O]” is used to mark movement, not “[in O,

etc.]”, even though the caption of the column referred to is “O, etc.” In general

there may be more space available for header captions than for column references.

37

2. Column groups. There must be a way to group columns together in hierarchical

arrangements, e.g. to group S, O, and V columns under the column group

“Independent Clause”, as in Fig. 3 (above); then the rendering process can produce

visual cues that indicate which columns are grouped together (see requirement 12 on

column styles).

a. Name. Each column group has a linguistically relevant name.

b. Order. The column groups have a defined logical order with respect to each other

within their immediate context (i.e. the chart as a whole, or a parent column

group).

3. Reusability. It is desirable for the analytical configuration information to be

independently reusable by multiple charts. For example a researcher (or group of

them) may be charting a series of texts in the same language, and wish to make the

charts easily comparable (see diagram in Fig. 6 below).

3.3.2 Requirements for text structure

4. Sentences. The charted text consists of a sequence of sentences. A sentence is

typically rendered as a group of rows of cells.

a. Order of sentences. Sentences occur in sequential order in the abstract chart as

they are to appear in the output. Order is also used to number each sentence in the

output. (Note that not every grammatical sentence in the text needs to be charted

as a separate sentence. E.g. in He said, “I am.”, the utterance “I am.” need not be

charted as a separate sentence unless the researcher wishes it to have its own

separate row.)

38

b. Cells. Each sentence contains cells.

c. Rows. A sentence is rendered as a series of rows of cells. Row information is

implied and does not need to be explicitly modeled. Rows are used for intra-

sentence numbering (if there are multiple rows within a sentence, they may be

numbered a, b, c…), and for styling of rows’ top and bottom borders (row borders

that coincide with sentence borders will typically be rendered with greater weight

[thicker or darker] than those within sentences). Every sentence is assumed to

start a new row in the output.

5. Cells. Sentences in the abstract chart consist of a sequence of cells. Abstract chart

cells are typically rendered as table cells in the output.

a. Text in cell. Each cell contains a (possibly empty) sequence of words or other

text content.

b. Column. A cell is associated with a column; the table cell will be rendered in that

column.

c. Order of cells. Cells have a defined order with respect to each other within their

immediate context. This corresponds to the order in which they will appear in the

output chart, which is based on the order of the words in the source text.

d. Row. Every cell is rendered in a particular row of the output table. However a

cell’s row does not need to be modeled explicitly as it can be inferred from other

information (in particular, the analytic configuration and the association of cells to

columns).

39

3.3.3 Requirements for text content

This section describes requirements for text content, including annotation on the text.

Annotation refers to “any descriptive or analytic notations applied to raw language data”

(Bird and Liberman 1999b:1). In the case of an abstract chart, “raw language data” means

written (electronically encoded) text, and annotation includes marking movement, noting

zero forms, and marking spans of text as having certain characteristics.

6. Words and morphemes. Text in a chart consists of words, which may be subdivided

into morphemes (as in the Inga chart, Fig. 3, sentence 6: Ajay-si).

a. Order of words and morphemes. There is a defined order on all words and

morphemes with respect to each other within their immediate context. This order

is the order in which text will appear in the rendered chart (which is also the order

in which the words or morphemes appear in the original text). (Left-to-right and

top-to-bottom rendering order is assumed, but see requirement 22 in §6.1.)

b. Encoding. It must be possible to encode any text that can be represented in

Unicode. This is the most portable and stable way to represent characters like the

accented vowels in the Inga chart (Fig. 3). This would be even more important for

more exotic characters such as those in non-Roman scripts.

c. Vernacular and gloss. Each word or morpheme has a vernacular form and may

have an associated gloss, for interlinear display (as in the Inga chart sentence 1:

Chihora has the gloss ‘that-time’).

40

d. Notes. Chart text may include not only the words of the original text, but also

words added by the researcher, such as notes. This text may be specially marked

by a span with a feature ID specifically for analytical notes (see requirement 7).

7. Spans.
22

 It must be possible to associate a range of text in the abstract chart with a

particular linguistic feature. This will allow the rendering process to render ranges of

text specially according to their associated features.

a. Range. A span covers a range of words and/or morphemes (sub-morpheme

granularity is not required), as well as inserted notation (like zero form markers

and movement markers—see requirements 8 and 9). For example in the Inga

chart, sentence 6, there would need to be a span (associated with a “direct-

quotation” feature) covering Ajay but not covering the -si morpheme which is part

of the same word. Another span would cover the word Caynórami, a zero

anaphora notation, and the word yachahuanga.

b. Linguistic feature. A span of text must be associated with an ID corresponding to

a linguistic feature. For example, one may need to identify a range of text

(consisting of a single word) as a present-tense verb, by associating a span

covering that word with a ‘Pres ’ feature ID, so that the rendering process can

then render that word in a style specified in the stylesheet for present-tense verbs.

Another example is found at the end of sentence 6 in the Little Hans chart (Fig.

5), where the text starting with “he dare go” consists of a complement clause. This

22 The term span is used in this thesis to mean a range of text in the abstract chart model corresponding to an
annotation unit in the annotated text in a one-to-one relationship. A span will be implemented as one or more
stretches in the abstract chart DTD and XML document. A stretch is a range of text in the abstract chart DTD
and XML document, subject to the limitations of XML, i.e. not being able to alternate its boundaries with those
of sentences, cells, or other elements.

41

text needs to be associated with a “complement clause” feature ID, so that it can

be rendered in <angle brackets>.23 The abstract chart model does not specify the

styles/formatting with which the features are rendered (e.g. underlining, color, or

begin-and-end punctuation); that is left to the rendering stylesheet. (But see §6.1,

requirement 26.)

c. Crossing cell and sentence boundaries. The text in a given span must be

allowed to begin in one cell or sentence and end in another, and it must be

possible for a span to cover some but not all of the text in a given cell or sentence.

In the example referred to above (sentence 6 of Fig. 5), the complement clause

begins in the “S” column and ends in the “O, Comp, Others” column.

d. Original formatting. It is sometimes necessary to preserve formatting from the

original text, without regard to any particular analytic meaning. For example, in

the Little Hans chart, the word he in he dare go is italicized in the original text,

and the researcher wished to preserve that information in the chart. This can be

modeled with the same mechanism as a linguistic feature.

8. Zeroes. It must be possible to encode putative occurrences of “zero” forms in the

text, to indicate zero anaphora, verb gapping, etc. (The rendering of such forms is

specified as in requirement 11.)

23 Another example of linguistic features that could be treated specially by the rendering process would be
location and time, as shown in the Inga chart (Fig. 3). Location change is represented in the original chart by the
notation L0

�L1 in sentence 1, while temporal succession is represented by an arrow in the first column linking
sentence 2 to sentence 1. However, the author (Levinsohn 2003, personal e-mail) no longer recommends
including this information (or notation) in a constituent chart. There are now considered to be better ways to
handle this information.

42

9. Movement. There must be provision for indicating fronting or other movement. (The

rendering of moved text will be determined by the stylesheet; but see §6.1,

requirement 26).

a. Range. The range of text that moved must be specified.

b. Source. The location from which the text moved (i.e. the location where such text

would normally be expected) must be specified.

c. Destination. The location to which the text moved (i.e. the location where it

actually occurred) must be specified.

3.3.4 Requirements for aesthetic configuration

10. Row numbering. A rendering preference indicating whether to number rows (a, b,

…) within sentences, throughout the chart.

11. Zero marker appearance. A string indicating preferred rendering of zero markers

(e.g. for elision or zero anaphora) throughout the chart, typically “Ø” or “——”.

12. Column styling. Border formatting styles (color, thickness, line style [e.g. double,

dotted, solid]) may be specified for columns and column groups, keyed to “rank”

(depth of nesting; see requirement 2). For example, one style for top-level columns or

groups, a second style for columns or groups nested within those, and so on. These

styles apply to vertical borders both in the headers and in the body of the output chart.

The formatting must be specified in an output-format-neutral way.

13. Row styling. Formatting for horizontal borders in the chart is specified similarly to

that for vertical borders (see previous requirement). There should be a style for

43

sentence borders and another style for row borders (within sentences). Typically

sentence borders would be darker or thicker than row borders.

14. Reusability. It is desirable for the aesthetic configuration information to be

independently reusable by other charts, and to be able to conveniently render one

abstract chart with various aesthetic configurations; for example, one type to use with

a stylesheet that produces HTML, and another to use with a stylesheet that produces

PDF.

15. Legend. Different researchers visualize their annotations in different ways, and even

a single researcher may not remember a few years later what the various formatting

styles were intended to indicate. Therefore it is desirable to document this

correspondence in a legend that is attached to the chart. For this the following data is

needed:

a. Features and other items. A list of which span feature IDs and other display-

configurable items (such as zero forms and moved text) need to be included in the

legend.

b. Sample text. For each feature ID, a short string to use when rendering a sample

span with that feature ID in the legend.

c. Description. A short, user-friendly text description of each span feature ID’s

meaning (e.g. “relative clause” or “Participant 3”).

3.3.5 Requirements for documentation

The requirements in this section have to do with documenting the chart and its

sources. While only the title and attribution affect a typical display of the chart, having all of

44

this information in the abstract chart promotes accountability and immutability (see Bird and

Simons 2003:§6.1,6.5) by providing unambiguous identification of the chart and its sources.

16. Title. A text string identifying the chart, to be displayed in title position, e.g. above

the chart.

17. Attribution. An optional text string that gives credit to contributing sources, to be

displayed with the chart, in order to fulfill distribution requirements that call for a

copyright or “used with permission” notice or the like to be displayed with the chart.

18. Version. The abstract chart’s version string, so that this chart can be uniquely

identified.

19. DTD Version. The version string of the DTD for the abstract chart, so that the chart

can be validated properly.

20. Source. A reference to the source document, including a version string: for

accountability, for access to the metadata in the source document, and in order to be

able to update the source data and regenerate the chart if the chart is generated.

3.4 Summary

In this chapter, requirements have been enumerated for an information model to be

able to encode the information presented in three example charts. The next chapter presents

an information model that meets these requirements.

45

CHAPTER 4.

ABSTRACT CHART INFORMATION MODEL

The previous chapter described the requirements that an abstract chart information

model must fulfill. This chapter presents the main result of this thesis, the information model

for an abstract chart designed to fulfill those requirements. Example XML code showing how

the information model can be instantiated is given in chapter 5, along with a description of a

stylesheet expressing a presentation model, and figures showing the display forms produced

by the stylesheet.

4.1 Structure of the abstract chart model

The overall structure of the abstract chart model is shown in Fig. 6:

 Abstract chart

text structure

<body>

analytic configuration
<analytic-config>

aesthetic configuration
 <aesthetic-

config>

documentation
<metadata> text content

[various elements]

Fig. 6. Information in an abstract chart.

46

The solid rectangles in the diagram represent modules of the information model. The

five modules are: text structure (containing the sentences and cells that make up the structure

of the text), text content (which includes text and annotation, intermingled), documentation,

analytic configuration, and aesthetic configuration. The string in <angle-brackets> in

each module in the diagram denotes the name of that module’s main XML element. Note that

the aesthetic and analytic configuration modules are separated from the main body of the

model. (The dashed rectangles and arrows show references to modules.) This separation

reflects the fact that the aesthetic and analytical configuration data in an abstract chart XML

document can be located in separate files (external entities, in XML terminology) from the

main body of the document. The purpose of this separation is to make the configuration

modules available to be shared by other abstract charts. (See §4.3 for elaboration on this

topic, and the sample abstract chart document in §5.2 where this is demonstrated for the

aesthetic configuration module.) The text content module is also separated from the main

body because its definition is referenced by both the aesthetic configuration module and the

text structure module, as will be seen below. However, unlike the configuration modules, it is

not intended that text content in XML documents should be separated out into other files.

The DTD for the abstract chart is structured like the above diagram, with the DTD

fragments for the configuration and text content components located in separate files. The

main file for the DTD is cc.dtd (see Fig. 7). This file includes the definition of the text

structure module (<body> element, shown in Fig. 11) and the documentation module

(<metadata> element, Fig. 8). The analytic and aesthetic configuration modules are stored

in cc-analyconf.dtd (Fig. 9) and cc-aesthconf.dtd (Fig. 10), respectively. Finally,

47

the DTD fragment describing text content element types (words, glosses, and so on) has been

placed in another separate file, cc-content.dtd (Fig. 12), since these element types are

used in both the main body of an abstract chart and in the aesthetic configuration module.

4.2 Abstract chart DTD

The following figures present the actual XML code comprising the parts of the

abstract chart DTD. Each listing contains comments (between <!-- and --> markers)

explaining the function of the various elements and attributes. In comments, the names of

attributes are preceded by the @ symbol, to differentiate them from element names and

improve readability.

For those who may not be familiar with DTD’s, a typical XML DTD is composed

mostly of ELEMENT and ATTLIST statements. The statement

<!ELEMENT eltname (children…)>

defines the element type called eltname and specifies what types of child elements (or in

linguistic terms, constituents) it may (or must) have. The statement

<!ATTLIST eltname attrname1 … attrname2 …>

defines the attributes that elements of type eltname may/must have. It also declares each

attribute’s type, its required/optional status, and a default value if any.

Fig. 7, below, gives an overview of the abstract DTD. This portion defines the

document element, cc (for “constituent chart”), which is the container for all other elements.

The cc element has four required child elements: metadata , analytic-config ,

aesthetic-config , and body . The structure of each of these child elements is shown in

48

separate figures below. The DTD fragments defining the analytic-config and

aesthetic-config elements are referenced from the main DTD file at the bottom of Fig.

7. The definitions for the <metadata> and <body> element types, while contained in the

main DTD file, are each displayed in their own separate figure (Fig. 8 and Fig. 11).

<?xml version="1.0" encoding="UTF-8"?>
<!--
 DTD for abstract constituent chart
 DTD version 2003-07-28T13:29:00-0500

 Copyright (c) 2003 by Lars Huttar

 Includes cc-aesthconf.dtd and cc-analyconf.dtd.

 Namespace:
 xmlns:cc = "http://purl.oclc.org/net/cicada/c c" for abstract

constituent chart
-->

<!-- cc:cc - document element for abstract chart -- >
<!ELEMENT cc (metadata, analytic-config, aesthetic- config, body)>
<!ATTLIST cc xmlns CDATA #FIXED "http://purl.oclc.o rg/net/cicada/cc" >
<!-- The above enforces a default namespace for the document. See

http://www.rpbourret.com/xml/NamespacesFAQ.htm#q7_6 for rationale.
-->

<!-- The definition of the <metadata> element goes here (see Fig. 8). -->

<!-- include DTD fragment for analytic configuratio n (see Fig. 9). -->
<!ENTITY % cc-analyconf.dtd SYSTEM "cc-analyconf.dt d">
%cc-analyconf.dtd;

<!-- include DTD fragment for aesthetic configurati on (see Fig. 10). -->
<!ENTITY % cc-aesthconf.dtd SYSTEM "cc-aesthconf.dt d">
%cc-aesthconf.dtd;

<!-- The definition of the <body> element goes here (see Fig. 11). -->

Fig. 7. DTD for abstract chart: cc.dtd.

The following figure (Fig. 8) gives the portion of the DTD that defines the

<metadata> element, which captures information about the abstract chart document—that

is, its documentation, or metadata. This element’s attributes and child elements store

documentation of the abstract chart: its title and attribution (strings to be rendered in the

49

presentation form); version identifiers of the abstract chart, the DTD, and the source

document; and some kind of reference to the source document (such as a Uniform Resource

Identifier [URI] or a bibliography entry).

Note that instead of designing our own <metadata> structure, another option would

have been to use a standardized format, such as that specified by the Open Language

Archives Community (OLAC)’s proposed Metadata standard (Simons and Bird 2002), to

encode metadata. Such a design would have made it easier to inform others about the

existence of an abstract chart, and to share it, via archives24 that make use of the standard

metadata format. However, it was decided that the metadata desired for this project could be

encoded most unambiguously in the abstract chart model by using custom markup. This

custom markup can later be translated “down” into the OLAC Metadata standard’s

interchange format without difficulty, when a chart is ready for archiving or distribution.

<!-- cc: metadata - documentation for chart -->
<!ELEMENT metadata (title, attribution?)>
<!ATTLIST metadata
 document-version CDATA #REQUIRED
 dtd-version CDATA #REQUIRED
 source-document CDATA #REQUIRED
 source-version CDATA #REQUIRED
>
<!-- The version attributes may contain any string, such as a revision

date or a version number. -->
<!-- @source-document is the URI of the document fr om which this one was

generated, such as an annotated text; or it may be a reference to an
unmarked-up text or some other data from which this chart was
derived, perhaps manually. -->

<!-- The metadata element's attributes are not used for processing or
display, only for documentation of the abstract cha rt XML document.
The title and attribution elements are used for dis play. -->

<!-- While all these attributes are required, @sour ce-document for example
may be set to 'none' if there is no source document . -->

24 Such as those participating in the Open Archives Initiative (Lagoze et al. 2002).

50

<!-- cc:title, a string, will typically be displaye d at top of
presentation form. -->

<!ELEMENT title (#PCDATA)>

<!-- cc:attribution is a message to be displayed gi ving credit to some

party, if such a message is required. -->
<!ELEMENT attribution (#PCDATA)>

Fig. 8. DTD section for <metadata> element.

Fig. 9, below, shows the DTD fragment for the <analytic-config> element (the

file analytic-config.dtd). This portion of the DTD uses hierarchical containment of

<column-group> and <column> elements to define the grouping of chart columns. Each

column-group and column may have a caption; each column may also have an abbreviation

and a specified width (as a percentage of table width). Every column also has a key, which

allows <cell> elements to specify the column to which they should be mapped. The other

column and column-group attributes defined below exist to simplify validation and

rendering.

<?xml version="1.0" encoding="UTF-8"?>
<!--
 DTD fragment for analytic-config element of abstract constituent

chart.
 DTD version 2003-07-28T13:29:00-0500

 Copyright (c) 2003 by Lars Huttar

 Included by cc.dtd.

 Namespace:
 xmlns:cc = "http://purl.oclc.org/net/cicada/c c" for abstract

constituent chart
-->

<!-- cc:analytic-config - contains column and colum n group configuration.

-->
<!ELEMENT analytic-config ((column-group | column)+)>
<!ATTLIST analytic-config position CDATA #FIXED "1" >
<!-- cc:analytic-config/@position=1 is convenient f or validating the

@position of descendant nodes. -->

<!-- cc:column-group - specifies a grouping of colu mns or column sub-

groups. -->

51

<!ELEMENT column-group (caption?, (column-group | c olumn)+)>
<!ATTLIST column-group
 ncol CDATA #REQUIRED
 rank CDATA #REQUIRED
 position CDATA #REQUIRED
>
<!-- @ncol is the number of columns spanned, which is equal to

count(.//column). Used for validation. -->
<!-- @rank is depth of nesting, inverted. The @rank of a column-group is

its child's @rank + 1. -->
<!-- @position is the column index from which this group starts. Used for

validation. -->

<!-- cc:caption - string(s) for identifying this co lumn or column-group to

the user. -->
<!ELEMENT caption (long, short?)>
<!ATTLIST caption xml:lang NMTOKEN #REQUIRED>
<!-- @xml:lang is currently unused, but could be us ed to build an analytic

configuration that can be viewed in various analysi s languages. -->

<!-- cc:long - long caption string for column(-grou p) -->
<!ELEMENT long (#PCDATA)>
<!-- cc:short - short caption string for column(-gr oup). The current

rendering stylesheet uses the short string if avail able; otherwise
the long string. -->

<!ELEMENT short (#PCDATA)>

<!-- cc:column - element containing caption and oth er configuration data

for a column -->
<!ELEMENT column (caption?)>
<!ATTLIST column
 ncol CDATA #FIXED "1"
 rank CDATA #REQUIRED
 position CDATA #REQUIRED
 styleID NMTOKEN #REQUIRED
 key CDATA #REQUIRED
 abbrev CDATA #IMPLIED
 width CDATA #IMPLIED>
<!-- @ncol - A column is always 1 column wide, but this attribute exists

for uniformity with column-groups. -->
<!-- @rank is depth of nesting, inverted. A column' s @rank is its parent's

rank - 1 (or 1 if no parent). -->
<!-- @position is the index of the column in a tabl e, starting from 1

(furthest left). -->
<!-- @styleID, which is the concatenation of 'col' and @position, is

helpful for linking cells in columns with CSS 25 styles. -->
<!-- @key is a unique id for each column, typically constructed from its

own caption and its ancestor column-groups' caption s. -->

25 The Cascading Style Sheet mechanism (CSS) is “a simple style sheet mechanism that allows authors and
readers to attach style (e.g. fonts, colors and spacing) to HTML documents” (Lie and Bos 1996).

52

<!-- @abbrev is a short name by which to refer to t his column, probably
similar to one of the header captions; may be used to render short
items like text movement source notes (e.g. '[in O] ') -->

<!-- @width specifies a desired percentage of the t otal table width that
this column should take. -->

Fig. 9. DTD fragment for analytic configuration: cc-analyconf.dtd.

The following listing, Fig. 10, gives the contents of the file aesthetic-

config.dtd , the DTD fragment for the <aesthetic-config> element. It consists of the

optional elements <settings> (preferences for rendering), <column-styles> (giving

information on border styles for columns and column groups, according to rank), <row-

styles> (specifying styles for row borders within and between sentences), <stretch-

features> (giving a list of possible featureID values for validation of feature-marked

stretches elsewhere), and <legend> , a list of items to include in the legend table, including

sample text and a description. At the end, the fragment references <cc-content.dtd> ,

which defines elements used by both <legend> and <cell> .

<?xml version="1.0" encoding="UTF-8"?>
<!--
 DTD fragment for aesthetic-config element of abstract constituent

chart.
 DTD version 2003-07-28T13:29:00-0500

 Copyright (c) 2003 by Lars Huttar

 Included by cc.dtd.
 Includes cc-content.dtd.

 Namespace:
 xmlns:cc = "http://purl.oclc.org/net/cicada/c c" for abstract

constituent chart
-->

<!-- cc:aesthetic-config - contains aesthetic confi guration info -->
<!ELEMENT aesthetic-config (settings?, column-style s?, row-styles?,

stretch-features?, legend?)>
<!ATTLIST aesthetic-config xmlns CDATA #FIXED

"http://purl.oclc.org/net/cicada/cc" >

53

<!-- The above line enforces a default namespace fo r the element.
 See http://www.rpbourret.com/xml/NamespacesFAQ. htm#q7_6 for rationale.

-->

<!-- cc:settings - chart-global rendering preferenc es -->
<!ELEMENT settings (zero-marker | number-rows)*>

<!-- cc:zero-marker - string to use for rendering z ero marker -->
<!ELEMENT zero-marker (#PCDATA)>

<!-- cc:number-rows - whether or not to including r ow numbering in output

('true' or 'false'); default 'true' -->
<!ELEMENT number-rows (#PCDATA)>

<!-- cc:column-styles - container for cc:column-sty le elements -->
<!ELEMENT column-styles (column-style*)>

<!-- possible values for border-style -->
<!ENTITY % border-style-values '(dotted | dashed | double | none |

solid)'>

<!-- cc:column-style - holds style attributes for r endering of a given

rank of column (group)s. -->
<!ELEMENT column-style EMPTY>
<!ATTLIST column-style
 rank CDATA #REQUIRED
 border-size CDATA #IMPLIED
 border-color CDATA #IMPLIED
 border-style %border-style-values; #IMPLIED>
<!--@rank tells what group-rank of column to apply this style to.

Redundant; @rank = position() for a given column-st yle. Used for
efficiency. -->

<!-- @border-size, @border-color, and @border-style currently use CSS
values. -->

<!-- cc:row-styles - container for cc:row-style ele ments -->
<!ELEMENT row-styles (row-style+)>

<!-- cc:row-style - holds style attributes for rend ering of a particular

style of row border. -->
<!ELEMENT row-style EMPTY>
<!ATTLIST row-style
 styleID (intra-sentence | inter-sentence) #REQUIR ED
 border-size CDATA #IMPLIED
 border-color CDATA #IMPLIED
 border-style %border-style-values; #IMPLIED
>
<!-- @styleID tells what row borders to apply this style to. Only two

@styleID values are meaningful in the stylesheet be ing used
(although a stylesheet could conceivably recognize more styles):
‘intra-sentence’ and ‘inter-sentence.’ -->

54

<!-- cc:stretch-features - a list of feature IDs, s o that featureID
references can be validated. -->

<!ELEMENT stretch-features (stretch-feature*)>

<!-- cc:stretch-feature - a container for a feature ID attribute of type

ID, for IDREFs to refer to. -->
<!ELEMENT stretch-feature EMPTY>
<!ATTLIST stretch-feature featureID ID #REQUIRED>

<!-- cc:legend - container for legend-item elements -->
<!ELEMENT legend (legend-item*)>

<!-- cc:legend-item - specifies a row for the legen d, consisting of a

stretch of text or other material as a sample, and a description.
Each sample stretch will have a @featureID attribut e. -->

<!ELEMENT legend-item (wordStretch | morphemeStretc h | noText)>
<!ATTLIST legend-item description CDATA #IMPLIED>

<!-- include DTD fragment for text content (includi ng stretches and

noText). -->
<!ENTITY % cc-content.dtd SYSTEM "cc-content.dtd">
%cc-content.dtd;

Fig. 10. DTD fragment for aesthetic configuration: cc-aesthconf.dtd.

The next listing gives the part of the main DTD file that defines the <body> element.

<body> consists of <sentence> elements, which consist of <cell> elements. Each

<cell> contains text, which generally consists of words and possibly also stretches, and

some non-text elements. Every cell also has a column-key attribute which maps it to the

appropriate column.

The description of requirement 5.c, regarding rows, notes that the row of a cell

(unlike a cell’s column) can be inferred from other information present. Specifically, if the

cell is the first in a sentence, it is placed in a new row (the row below that of the previous

cell). If however the cell is not first in its sentence and it is in the same column as, or is in a

column to the left of, the previous non-empty cell, the new cell goes in a new row. Otherwise

the new cell goes in the same row as the previous non-empty cell. (The model does not

55

provide for blank rows.) For this reason there is no need for explicit row information in the

abstract chart model.

Note that although the definition of the <cell> element type uses the definitions in

cc-content.dtd , there is no entity reference to that file in this section (or in the main DTD

file at all). This is because cc-content.dtd is already referenced by cc-aesthconf.dtd,

which is referenced by the main DTD file. Element type definitions legally can only be

included once in a DTD.

<!-- cc: body - the body of the abstract chart, an ordered seque nce of
sentences. -->

<!ELEMENT body (sentence+)>

<!-- cc:sentence - an ordered sequence of cells, wh ich are to be wrapped

into rows. -->
<!ELEMENT sentence (cell+)>

<!-- cc:cell - a sequence of text etc. that should be displayed in a

particular cell. -->
<!ELEMENT cell (word | noText | wordStretch)+>
<!ATTLIST cell
 column-key CDATA #REQUIRED
 column-span CDATA "1"
 glossed (yes | no) "no"
>
<!-- @column-key gives reference to a column (corre sponding to

cc:column/@key in cc-analyconf.dtd) in which this c ell should be
rendered. -->

<!-- @column-span is currently unused. -->
<!-- @glossed aids validation: in a given cell, eit her all words and

morphemes must be glossed (in which case @glossed = 'yes'), or none
are glossed (when @glossed = 'no'). This also simpl ifies interlinear
rendering. -->

<!-- cc:word, cc:noText, and cc:wordStretch are def ined in cc-content.dtd

which is included by cc-aesthconf.dtd, because cc-a esthconf.dtd
might conceivably be used apart from this file, whe reas this file
(cc.dtd) will always require cc-aesthconf.dtd. -->

Fig. 11. DTD section for <body> element.

In the next listing, Fig. 12, the elements that can be in a <cell> element are defined.

<wordStretch> and <morphemeStretch> elements exist to associate feature IDs (corres-

56

ponding to linguistic features) with series of words or morphemes, or other elements. Words

consist of either a vernacular string and optional gloss, or a series of morphemes or other

elements. Other elements include zero markers (<zeroMarker> , which may stand in for

words or morphemes with a null surface form), and text movement sources (<moveSource> ,

marking the spot from which word[s] or morpheme[s] moved). <moveText> elements have

a movedTo attribute that references the destID of the stretch to which the text is said to

have moved.

<?xml version="1.0" encoding="UTF-8"?>
<!--
 DTD fragment for text content of cells (and legend) in abstract

constituent chart.
 DTD version 2003-07-28T13:29:00-0500

 Copyright (c) 2003 by Lars Huttar

 Included by cc-aesthconf.dtd.

 Namespace:
 xmlns:cc = "http://purl.oclc.org/net/cicada/c c" for abstract

constituent chart
-->

<!-- attributes for wordStretch and morphemeStretch elements -->
<!ENTITY % stretchAttrs '
 featureID IDREF #REQUIRED
 destID ID #IMPLIED
 unitGroup NMTOKEN #REQUIRED
 frontEnd (yes | no) "yes"
 backEnd (yes | no) "yes"'>
<!-- @featureID specifies the ID of a linguistic fe ature that will be

mapped into a formatting style by the stylesheet. - ->
<!-- @destID marks the stretch as moved text, and g ives the corresponding

moveSource element a destination ID to point to. Wh en this happens,
the moved text is contained in the destination stre tch, not in the
moveSource. -->

<!-- @unitGroup gives the key of a text annotation unit, so we can tell
which stretches belong to the same unit. (These do not necessarily
have to correspond to unit IDs in the annotated tex t, though they
could.) -->

<!-- @frontEnd and @backEnd control whether or not to render span-initial
/ span-final punctuation, such as brackets, since m ultiple stretches
may be used to model one span, but the punctuation should not be
repeated. -->

57

<!-- cc:wordStretch - a stretch to associate a styl e with given words.

Stretches cannot be empty. -->
<!ELEMENT wordStretch (word | noText | wordStretch) +>
<!ATTLIST wordStretch %stretchAttrs;>

<!-- cc:word - element containing one word of text, either subdivided into

morphemes or not. -->
<!ELEMENT word ((vernac, gloss?) | (morpheme | morp hemeStretch |

noText)+)>

<!-- cc:vernac - a word or morpheme in the text und er study. -->
<!ELEMENT vernac (#PCDATA)>

<!-- cc:gloss - a gloss for the preceding cc:vernac element. -->
<!ELEMENT gloss (#PCDATA)>

<!-- cc:morpheme - element containing one morpheme of text. -->
<!ELEMENT morpheme (vernac, gloss?)>

<!-- cc:morphemeStretch - a stretch to associate a style with given

morphemes. -->
<!ELEMENT morphemeStretch (morpheme | noText | morp hemeStretch)+>
<!ATTLIST morphemeStretch %stretchAttrs;>

<!-- cc:noText - element containing non-text item, such as a zero marker

or point from which some text moved. -->
<!ELEMENT noText (zeroMarker | moveSource)>

<!-- cc:zeroMarker - element marking zero anaphora or some other zero

form. -->
<!ELEMENT zeroMarker EMPTY>

<!-- cc:moveSource - element marking point from whi ch some text moved. -->
<!ELEMENT moveSource EMPTY>
<!ATTLIST moveSource
 movedTo IDREF #REQUIRED
 note CDATA #IMPLIED
>
<!-- @movedTo gives the @destID of the stretch indi cating where text moved

from the moveSource location. -->
<!-- @note, if present, is used for a custom string to display instead of

'[in O]', where O is the column where the destinati on stretch is
found. -->

Fig. 12. DTD fragment for text content: cc-content.dtd.

Regarding the above DTD fragment, footnote 22 on p. 40 mentions that spans are

modeled as stretches in an XML document and in the DTD. This is because spans must be

able to cross boundaries (partially overlap) with other objects, such as sentences, cells,

58

words, and other spans. But XML elements are not allowed to cross boundaries with other

elements. Therefore a span in the abstract chart information model is implemented as a series

of stretches in the DTD—as many stretches as necessary to cover the span, nested as needed

to accommodate the other data structures. Each stretch for a given span is marked with the

same featureID attribute, so that the whole span is uniformly rendered. Furthermore, the

first and last stretches for each span have the attributes frontEnd=”yes” and

backEnd=”yes” respectively. This allows appropriate rendering of beginning and ending

punctuation for styles that require it, for example, brackets of various kinds for embedded

clauses, or quotation marks for direct quotations. Finally, all stretches corresponding to a

particular span are given the same unitGroup ID attribute, making it possible to identify

spans unambiguously. This provision is made to support hypothetical software that may edit

abstract charts as primary objects, rather than generating them from annotated text. In such a

case the preservation of the unity of spans in the encoded data would enable the software to

be more intelligent about spans, making maintenance of charts much more convenient.

A requirement related to spans is 7.d, which states that it may be necessary to

preserve formatting from the original text. This requirement is fulfilled without special

treatment in the information model; formatted original text is modeled as just another type of

styled span. The span styles italic, bold, and underlined are recognized by the

rendering stylesheet and appropriate formatting markup is generated for the output. If

additional types of original formatting are needed (not considered a basic requirement for

constituent charts), the stylesheet must be augmented to recognize additional styles.

59

4.3 Sharing of configuration content

In §4.1 it was mentioned that configuration modules can be separated from the main

XML file of an abstract chart. The following diagram (Fig. 13) shows how a single aesthetic

configuration file might be shared by several abstract charts, for different texts in different

chart for
Inga text 1

analytic
configuration

for Inga

linguist A’s
aesthetic

configuration

chart for
Inga text 2

chart for
English text 1

chart for
English text 2

analytic
configuration
for English

 Fig. 13. Sharing configuration files.

languages, giving an overall uniform look. The charts for the two Inga texts share a common

analytic configuration file, since their needs for columns and column grouping are similar.

Likewise the English texts share one analytic configuration file between them. This would

allow a researcher to change the column design (e.g. to adjust the column widths) of a whole

group of charts even after much charting has already been done, simply by changing one

configuration file rather than modifying each chart individually. Sharing one analytic

configuration file could also serve as a guarantee of the comparability of the charting being

done on several charts.

60

Another possible arrangement (Fig. 14) would be to create different aesthetic

configurations for different output formats, e.g. HTML and PDF, and swap them depending

on the type of output desired. For example, the aesthetic configuration for HTML might use

colors for participant references and light gray intra-sentence row borders, while the one for

PDF might use black-and-white only, and dashed lines for intra-sentence row borders.

Besides swapping aesthetic configurations, it would also of course be necessary to swap

stylesheets in order to generate the different output format languages; but the aesthetic

configurations could hold settings tailored specifically to those formats.

chart for
Inga text 1

analytic
configuration

for Inga
aesthetic

configuration
for HTML

chart for
Inga text 2

chart for
English text 1

chart for
English text 2

analytic
configuration
for English

aesthetic
configuration

for PDF

Fig. 14. Swappable configuration files for different purposes.

With the current abstract chart model, it is possible to swap configurations by

changing external entity references in each abstract chart to reference different configuration

components, and by running different stylesheets. Ideally, an application would take from the

user the burden of managing entity references and modifying the XML files. For

convenience, the application could enable the user to create a project profile listing several

61

common scenarios. Each scenario would specify the abstract charts to render, configuration

components, stylesheets to use, and the associations between them. Then the user could

select the desired scenario according to the need of the occasion and run it, without having to

modify the abstract charts.

4.4 Summary

This chapter has presented an information model for abstract charts, expressed as a

DTD. In the next chapter, it is demonstrated how the information model was instantiated for

the source charts shown in Fig. 3-Fig. 5. Then a presentation model (implemented as a

stylesheet) is briefly described, and the resulting presentation forms of the charts are shown.

62

CHAPTER 5.

PROOF OF CONCEPT

5.1 Introduction

This chapter demonstrates the adequacy of the abstract chart information model. The

information in the three original charts was entered into instances of the abstract chart model,

then HTML presentation forms of the charts were generated using an XSL stylesheet. These

generated HTML forms were judged to be adequate by the authors of the original charts

(personal communication, 2003).

In the following sections, sample XML code is presented to illustrate the use of the

abstract chart model. Then a stylesheet used to render the HTML chart displays is described

in general terms. Finally, the rendered chart displays themselves are shown.

5.2 Sample abstract chart XML

This section shows excerpts from an XML encoding of an abstract chart, demon-

strating how the abstract chart information model is instantiated. The abstract chart is based

on the original Inga chart shown in Fig. 3. As before, XML comments in <!-- --> , as well

as comments in prose, elucidate some aspects of the XML. This abstract chart forms the basis

from which the presentation form in Fig. 20 is rendered.

63

Fig. 15, the first figure, is an overview of the XML document. The DOCTYPE

statement indicates that the document is intended to conform to the DTD cc.dtd (shown in

Fig. 7), and can be validated against it. It also shows the entity declaration for referencing the

aesthetic configuration, which is located in a separate file, aesthconf1.xml . After the

DOCTYPE statement comes the document element, <cc> , which contains everything else in

the document. Comments show where the other parts of the document (documentation,

analytic and aesthetic configurations, and chart body) plug in.

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="cc-to-html.x sl"?>
<!DOCTYPE cc SYSTEM "cc.dtd" [
 <!-- Entity declaration for aesthetic configurati on component. -->
 <!ENTITY aesth-conf SYSTEM "aesthconf1.xml">
]>

<!-- Document element. -->
<cc xmlns="http://purl.oclc.org/net/cicada/cc">

 <!-- Documentation (<metadata>) goes here (see Fi g. 16). -->

 <!-- Analytic configuration goes here (see Fig. 1 7). -->

 <!-- Entity reference for aesthetic configuration (see Fig. 18). -->
 &aesth-conf;

 <!-- Body of chart goes here (see Fig. 19). -->

</cc>

Fig. 15. Overview of Inga abstract chart XML document.

Fig. 16 shows the instantiation of the documentation of the chart, encoded in the

<metadata> element. The DTD section for <metadata> is shown in Fig. 8. The

metadata attributes contain information that is not intended for display (although it could

be displayed): the version of this document, the version of its DTD, the source from which it

is derived, and some form of version string identifying the version of the source. The

64

elements within <metadata> , on the other hand, hold information that is to be rendered as

part of the presentation form: the title of the chart, and an attribution string.

While the <attribution> element and the source-document attribute contain

some similar information, their purposes are different. The source-document attribute is

designed to help ensure that the abstract chart contains the information necessary to recover

the source of the data from which the abstract chart was derived. The <attribution>

element, on the other hand, provides a place for a message (if any) that should always be

displayed with the chart, including obligatory phrases such as “Used by permission” that do

not help identify the source. Moreover, the attribution may refer to a different document than

the source document. For example, the attribution may reference a visual presentation of the

chart in a published work, while the source document is an annotated text XML document

from which the abstract chart was generated.

 <!-- Documentation -->
 <metadata
 source-document="Longacre, Robert E. and Step hen H. Levinsohn. 1978.

Field analysis of discourse. In Current Trends in T extlinguistics,
ed. by Wolfgang U. Dressler, 103-22. Berlin: de Gru yter."

 source-version="1978"
 dtd-version="2003-07-28T13:29:00-0500"
 document-version="2003-07-28T13:29:00-0500">

 <title>Constituent chart: "Inga Text"</title>

 <attribution>from Longacre, Robert E. and Steph en H. Levinsohn. 1978.

Field analysis of discourse. In Current Trends in T extlinguistics,
ed. by Wolfgang U. Dressler, 103-22. Berlin: de Gru yter. Used by
permission. [With modifications based on Dooley an d Levinsohn
(2001) and personal communication with Levinsohn,
2003]</attribution>

 </metadata>

Fig. 16. Documentation module of Inga abstract chart.

65

Next, Fig. 17 shows the analytic configuration portion of the Inga abstract chart XML

document. (See Fig. 9 for the DTD fragment for an analytic configuration.) For this

particular abstract chart, the analytic configuration is not located in a separate file (entity),

but is part of the main XML file.

The purpose of an analytic configuration is to define the columns of the chart and

how they are grouped. This particular document defines six columns, three of which belong

to a column group. The first column (which has no caption) is used for displaying the

sentence number; then follows the column for pre-nuclear elements, followed by the

“Independent Clauses” column group, which contains three columns: “S”, “(O)”, and “P”;

and last is the “Post-nuclear elements” column. The top-level columns and column group

(that is, those that are not part of a column group) are of rank 2, while the second-level

columns (those that are part of a first-level column group, namely, “S”, “(O)”, and “P”) are

of rank 1. The rank is used by the stylesheet to render the top-level columns and column

group with thicker borders (see <column-styles> in Fig. 18).

 <analytic-config>

 <!-- Sentence number column (no caption). -->
 <column position="1" rank="2" styleID="col1" ke y="Snum"/>

 <!-- Pre-nuclear elements column. -->
 <column position="2" rank="2" key="pre" abbrev= "Pre-nuc"

styleID="col2">
 <caption xml:lang="en"><long>Pre-nuclear elem ents</long></caption>
 </column>

 <!-- Group the S, (O), and P columns under the Independent

Clauses column-group: -->
 <column-group position="3" rank="2" ncol="3">
 <caption xml:lang="en"><long>Independent Clau ses</long></caption>

 <column ncol="1" key="ind-cl/s" position="3" styleID="col3"

abbrev="S" rank="1">
 <caption xml:lang="en"><long>S</long></capt ion>

66

 </column>

 <column ncol="1" key="ind-cl/o" position="4" styleID="col4"

abbrev="O" rank="1">
 <caption xml:lang="en"><long>(O)</long></ca ption>
 </column>

 <column ncol="1" key="ind-cl/v" position="5" styleID="col5"

abbrev="P" rank="1">
 <caption xml:lang="en"><long>P</long></capt ion>
 </column>

 </column-group>

 <column ncol="1" position="6" key="post" abbrev ="Post-nuc" rank="2"

styleID="col6">
 <caption xml:lang="en"><long>Post-nuclear ele ments</long></caption>
 </column>

 </analytic-config>

Fig. 17. Analytic configuration module of Inga abstract chart.

The contents of the aesthetic configuration for the Inga chart are shown in Fig. 18.

For the aesthetic configuration DTD fragment, see Fig. 10. Unlike the analytic configuration,

in this abstract chart the aesthetic configuration is located in a separate file,

aesthconf1.xml .

The aesthetic configuration consists of five elements: <settings> , which are

rendering preferences that apply to the whole chart; <column-styles> , which determine

what styles of borders are used to render columns and column-groups of various ranks;

<row-styles> , which determine what styles of horizontal borders are rendered between

sentences and within sentences; <stretch-features> , which enumerate the list of valid

feature IDs that stretches in the body of the chart may use; and <legend> , which lists the

items to be documented in the legend table that will be rendered with the chart.

67

Note that the actual formatting for a given stretch-feature (e.g. bold, blue color, etc.)

is nowhere specified in the aesthetic configuration nor in the rest of the abstract chart; that is

determined solely by the style sheet used for rendering (but see §6.2, paragraph 26).

Each legend item has a description attribute, and contains sample text to display. This

sample text is encoded using the same markup as the text content of a cell in the chart body.

The DTD for text content is shown in Fig. 12.

<?xml version="1.0" encoding="UTF-8"?>
<!-- <!DOCTYPE aesthetic-config SYSTEM "cc-aesthcon f.dtd"> -->
<!-- Since this file is an entity included in anoth er XML file, it

cannot have its own DOCTYPE declaration. -->

<aesthetic-config>

 <!-- Chart-global rendering preferences. -->
 <settings>
 <!-- Yes, number the rows. -->
 <number-rows>true</number-rows>
 <!-- Represent zero marker as two em dashes. -->
 <zero-marker>——</zero-marker>
 </settings>

 <!-- Style info for column(-group)s, by rank. -->
 <column-styles>
 <!-- No special styling for rank 1. -->
 <column-style rank="1"/>
 <!-- Column-groups of rank 2 are rendered with doub le-line

borders. -->
 <column-style border-style="double" rank="2"/>
 </column-styles>

 <row-styles>
 <!-- Row borders betweem sentences are solid. - ->
 <row-style styleID="inter-sentence" border-size ="1" border-

style="solid" border-color="black"/>
 <!-- Row borders within sentences are dashed. - ->
 <row-style styleID="intra-sentence" border-size ="1" border-

style="dashed" border-color="black"/>
 </row-styles>

 <!-- Stretch feature IDs allowed in this chart (f or validation)

-->
 <stretch-features>
 <stretch-feature featureID="move-dest" />

68

 <stretch-feature featureID="direct-quote" />
 <stretch-feature featureID="partcpt-1" />
 … <!-- additional stretch-features omitted -->
 </stretch-features>

 <!-- Items to be included in legend table. -->
 <legend>

 <legend-item description="Moved (e.g. fronted) text">
 <wordStretch unitGroup="u1" featureID="move-d est" destID="m-sample">
 <word><vernac>sample</vernac></word>
 </wordStretch>
 </legend-item>

 <legend-item description="Direct quotation">
 <wordStretch unitGroup="u2" featureID="direct -quote">
 <word><vernac>sample</vernac></word>
 </wordStretch>
 </legend-item>

 <legend-item description="Participant 1: mother -in-law">
 <wordStretch unitGroup="u3" featureID="partcp t-1">
 <word><vernac>...</vernac></word>
 </wordStretch>
 </legend-item>

 … <!-- additional participant legend items omitted -- >

 <legend-item description="Zero anaphora ">
 <noText><zeroMarker/></noText>
 </legend-item>

 </legend>

</aesthetic-config>

Fig. 18. Aesthetic configuration module of Inga abstract chart.

Finally, in Fig. 19, we fill in the main body of the chart, which like most of the chart

is located in the main XML file, inga-cc.xml . The DTD section for the <body> element is

shown in Fig. 11.

Here only the first sentence in the chart is shown, as an illustration of the markup

system. The sentence contains a series of six cells. The first five cells occur in successive

columns, and therefore are rendered in a single row. The sixth cell occurs in the same column

as the fifth, and is therefore rendered on the following row.

69

The first cell is associated with the “Pre-nuclear elements” column by means of that

column’s key, “pre ”. The cell’s contents consist of one word, with a vernacular component

(Chihora) and a gloss (‘that-time’). The second cell contains an example of a stretch,

associating the words chi suégraca with the feature ID “particpt-1 ”, identifying the

phrase as a reference to participant number 1 in a list, which is the mother-in-law in this

story. This stretch’s unitGroup ID, “u7”, is unique to this stretch, indicating that it

corresponds to a complete span, and does not need to be united with other stretches in order

to arrive at the linguistic unit to which this feature ID was originally applied. (See discussion

below Fig. 12 for motivation of this attribute.)

The third cell contains two non-textual items, a zero marker (which is marked as a

reference to “particpt-2 ” by means of a surrounding stretch), and a movement source,

which indicates that some text has moved from this location to a location identified by the

destination ID “m1”. The movement source has a value for the optional note attribute

supplying the string “Postposed Goal” to be used instead of the default “in Post-nuc” in a

note in square brackets. (The default note and square brackets are determined by the

rendering stylesheet.) The destination ID “m1” is found in the last cell in this sentence, where

it is identified by a surrounding stretch with a destID attribute value of “m1”. That stretch

contains another stretch, which uses the feature ID “partcpt-A ” to associate its contents,

chilacuán piti, with participant (or prop) A, a piece of papaya. This example demonstrates

that it is possible to associate multiple features with a given linguistic unit by using nested

stretches.

70

 <body>

 <!-- first sentence -->
 <sentence>

 <!-- first cell goes in Pre-nuclear column -- >
 <cell column-key="pre" glossed="yes">
 <word>
 <vernac>Chihora</vernac>
 <gloss>that-time</gloss>
 </word>
 </cell>

 <cell column-key="ind-cl/s" glossed="yes">
 <!-- Stretch associates this phrase with fe atureID for

participant 1. -->
 <wordStretch unitGroup="u7" featureID="part cpt-1">
 <word>
 <vernac>chi</vernac>
 <gloss>that</gloss>
 </word>
 <word>
 <vernac>suégraca</vernac>
 <gloss>mother-in-law</gloss>
 </word>
 </wordStretch>
 </cell>

 <cell column-key="ind-cl/o" glossed="no">
 <wordStretch unitGroup="u8" featureID="part cpt-2">
 <!-- A use of a zero marker, referring to participa nt 2 -->
 <noText><zeroMarker/></noText>
 </wordStretch>
 <noText>
 <!-- Text moved from here. -->
 <moveSource movedTo="m1" note="Postposed Goal"/>
 </noText>
 </cell>

 <cell column-key="ind-cl/v" glossed="yes">
 <word>
 <vernac>ñugpagrinsi,</vernac>
 <gloss>went-ahead-of</gloss>
 </word>
 </cell>

 <cell column-key="post" glossed="yes">
 <word>
 <vernac>huacaspa,</vernac>
 <gloss>weeping</gloss>
 </word>
 </cell>

71

 <!-- Another cell in the same column (goes to following row)
-->

 <cell column-key="post" glossed="yes">
 <!-- Nested stretches: outer one indicates text that moved

here. -->
 <wordStretch unitGroup="u9" featureID="move -dest" destID="m1">
 <!-- Inner stretch associates phrase with participant A (a

prop). -->
 <wordStretch unitGroup="u10" featureID="p artcpt-A">
 <word>
 <vernac>chilacuán</vernac>
 <gloss>wild-papaya</gloss>
 </word>
 <word>
 <vernac>piti</vernac>
 <gloss>piece</gloss>
 </word>
 </wordStretch>
 <word>
 <vernac>pambascama.</vernac>
 <gloss>to-where-had-buried</gloss>
 </word>
 </wordStretch>
 </cell>

 </sentence> <!-- End tag of first sentence. -->

 … <!-- Remaining sentences omitted. -->

 </body>

Fig. 19. Body of Inga abstract chart.

5.3 A rendering stylesheet

In this section, a rendering stylesheet for an abstract chart, cc-to-html.xsl , is

described in general terms. The full code of the stylesheet can be found at (Huttar 2003).

Other stylesheets could be used instead to render abstract charts into different presentation

forms.

The stylesheet begins with the use of an auxiliary stylesheet, validate-cc.xsl,

which performs validation of the abstract chart for constraints that cannot be specified in the

DTD. For example, the DTD can specify that every stretch’s featureID attribute must be

72

one of a list of valid featureID s, but it cannot express the constraint that every column ’s

rank attribute must hold a value one less than that of its parent. If the validation stylesheet

finds that the abstract chart violates a constraint, a diagnostic message is printed describing

where the error was found, and stylesheet processing terminates.

The rendering stylesheet proceeds by emitting an HTML header, including CSS styles

code. Much of this CSS code is boilerplate, and could be moved out to a separate cc.css

stylesheet, referenced by link from the HTML header, if desired. CSS styles for row and

column borders are generated from the aesthetic configuration information in the abstract

chart.

After generating the legend table and the title and attribution, the stylesheet generates

the table which is a view of the chart itself. First, header rows are generated based on the

columns and column-groups in the abstract chart’s analytic configuration; then table body

rows are generated based on sentences and cells in the annotated text portion of the abstract

chart. HTML span elements with CSS style attributes are used to associate wordStretch

and morphemeStretch styles with the text spanned by the stretches. CSS style attributes

are also used to associate cells with the appropriate row-border and column-border styles.

5.4 Chart for Inga story

The HTML chart display for the Inga text, as rendered from its abstract chart, is

shown in Fig. 20. (For comparison, the originally published version may be seen in Fig. 3.)

As noted earlier in footnote 23 above, some information have not been preserved: the

location tracking and temporal succession information indicated by the L1/L2 and arrow

73

Fig. 20. Display for Inga story rendered from abstract chart.

notations. Moreover, the dashed lines and circles marking participant reference chains have

been removed, at the original chart author’s suggestion.26 (The latter does not constitute the

omission of information, but merely of notation, since participant reference chains can still

be inferred from the participant reference information that is shown.)

26 Dooley and Levinsohn (2001:64) describe a separate method of participant reference charting.

74

It may also be noted that some aesthetic details have been changed: the vernacular

text is rendered in italics rather than underlined, and quotations are enclosed in «guillemots»

rather than dash-underlined. Moreover the gloss line text is smaller than the vernacular line.

These are all configurable aesthetic changes, and could have been done in the same form as

the original chart (except for the dashed underline, which is not supported in HTML). The

essential point, however, is that the information in the original chart is preserved and is

presented clearly and consistently.

A few other features27 have been added in the HTML version of the chart. Bold

formatting is used to make moved text more noticeable (as in the last column of line 1b). A

legend is added at the upper right of the chart to ensure that a reader of the chart will have the

information necessary to decode the chart. Another feature added, although not visible in the

print version of this thesis, is that a different color was used for each participant to make

participant reference tracking easier. Color features would be useful for on-screen viewing of

charts (e.g., on the web). Another new feature is dashed intra-sentence lines to separate rows

from each other. For example, in the original Inga chart (Fig. 3), if sentence 2 is compared

with sentence 5, it is not immediately obvious that in sentence 2, ninsi precedes Caypimi

because Caypimi is on a separate logical row; whereas in sentence 5, tarí comes after pitíllasi

because the two are on the same logical row (but pitíllasi appears on the next physical line

[in the same cell] because of word wrapping). This ambiguity would not occur in the HTML

form of the chart; the use of dashed lines between rows in the HTML form of the chart

27 “Features” in the sense of useful characteristics, not in the sense of linguistic features.

75

clarifies the difference between word wrapping (as in sentence 5) and logically separate rows

(as in sentence 2).

This brings us to a limitation in the way this particular stylesheet uses HTML to

render interlinear text. (This is not a limitation of the abstract chart model but of the

presentation method.) The method used here guarantees that each vernacular word or

morpheme and its gloss will be aligned properly, and will not wrap lines in such a way as to

interpose other text between a vernacular word or morpheme and its gloss. However, this is

accomplished at the cost of rigidity. In the HTML rendered chart, a word and its gloss cannot

be wrapped together as a unit (for example, “miticú / fled” in sentence 3 cannot be rendered

below “sipirigrís / going-and-strangling-self”28). Bow, Hughes, and Bird (2003:§5.3) note

that this limitation is inherent in simpler formatting languages such as HTML and DocBook,

but can be overcome using more sophisticated layout languages such as XSL Formatting

Objects (XSL-FO) and TEX.

5.5 Chart for “Ordeal”

The next chart, “Ordeal” (Fig. 21), is a fairly straightforward application of the

abstract chart model to the original chart. (The original is shown in Fig. 4.) It may be noted

that the process of applying descriptive markup to the chart uncovered some inconsistencies

in the original, with the result that the quality of the chart was improved. For example, the

quotation “Hello” (sentence 3) is given different punctuation in the original than the

quotation “How’s it going?” (sentence 9). This was not due to any analyzed distinction

28 Depending on the HTML browser, it may or may not be possible for a long, hyphenated gloss, such as “to-
one-who-had-gone” (sentence 8), to be wrapped in the space below the vernacular.

76

Fig. 21: Display for “Ordeal” rendered from abstract chart.

77

(personal communication with author, 2003). Having to give each quotation or other unit a

descriptive tag (in this case, a featureID attribute on a span) caused us to focus on the

actual information encoded in the chart, which in the end resulted in a more consistent

presentation form.

With any chart, however intuitively designed and consistently executed, some aspects

of the visual “markup” may be unfamiliar to a given reader. To solve this problem, the author

must spend time writing, and the reader must spend time finding and digesting, an explan-

ation of what the various visual forms mean. In the case of the original “Ordeal” chart, for

example, the meaning of the dashed lines and the arrows pointing across columns29 was not

at first clear to this reader. This situation can be ameliorated by use of a notation summary

(legend) located directly adjacent to the chart itself. The legend shown here in the HTML

version is automatically generated from the information supplied in the aesthetic

configuration. Clearly not all types of notation fit well into a table cell, but this is a

convenient format for many cases.

Upon investigation, it turned out that one linguistic phenomenon, text movement, was

being rendered in three different ways in the three sample charts. In the Inga chart (Fig. 3),

the word “fronted” in the (O) column (sentence 8) indicates that some text has moved

leftward from the (O) column. The notation “(O)” under Riscata indicates that Riscata was

the text that had moved from the (O) column. (Similarly with “(O)” in sentence 1, although

“postposed,” corresponding to “fronted,” is not used in the (O) column in the original chart.)

In the “Ordeal” chart (Fig. 4), text movement is shown by arrows: the arrow points from the

29 The dashed lines indicate that the following text is the complement clause of a “merged sentence.” The
arrows are discussed below.

78

moved text to the column from which it has moved (sentence 9 for example). The moved text

is placed in parentheses. And in the “Little Hans” chart (Fig. 5), for example in sentence 3, a

note “[in O]”, placed in the column from which the text moved, tells what column the text

moved to. In “Little Hans,” no special marking is used to highlight the moved text itself, or to

distinguish it from any other text that may be in the same column.

For this sample implementation, the decision was made to render all three charts

using one stylesheet, thus unifying their notation to a large degree (with the exception of the

zero marker notation, which is configurable in the aesthetic configuration component of each

abstract chart). A conflation and adjustment of the three notations was settled on, using “[in

A]” in column B to indicate that text had moved from B to A, and rendering the moved text

in bold for greater visibility.

In another instance of unified visualization, angle brackets < > are used to mark

complement clauses in the “Ordeal” HTML chart as they are in the “Hans” chart, though the

description of them shown in the legend is different: in the “Ordeal” chart they indicate a

special kind of complement clause, that of a “merged sentence.” The chart’s author felt that

this was an important distinction that needed to be preserved.

5.6 Chart for “Little Hans”

The “Little Hans” chart is the longest and most complex of the three. The first page of

the rendered chart is shown in Fig. 22. See Fig. 5 for the original version. (The full HTML

rendered version of this chart and the others, *-cc.html , can be found at [Huttar 2003].)

Encoding the Hans chart with descriptive markup required some analysis of what information

was actually intended in the way the original chart was formatted. Double vertical lines

7
9

Fig. 22. Display for “Little Hans” rendered from abstract chart (first page).

80

showed the boundaries of column groups, as in the Inga chart. This convention was carried

over to the HTML chart rendering. But what was meant by the dashed line between the

“Conj” and “S” columns under the “Preposed Dependent Clauses” group, and how did its

meaning differ from that of the lack of vertical lines between the “S”, “V”, and “O, etc.”

columns in that group?30

It was determined in consultation with the chart author that the “Conj” column is

simply a member of the “Preposed Dependent Clauses” column group, on equal standing

with “S”, “P” (or “V”), and “O, etc.” These columns were then modeled as equals in the

abstract chart, and for this reason the rendered HTML output uses the same style of vertical

lines (single and solid) between these four columns, but surrounds the Preposed Dependent

Clauses group with double lines. The decision was also made to separate the “#” and “Notes”

columns into two columns.

Another aspect of the word-processor-created Hans chart is the use of text overflow

across columns. For example, in the “Postposed Dependent Clauses” column group, the “S”,

“P”, and “O, etc.” columns are modeled as a single table column, in which constituents are

aligned with the proper header by the insertion of spaces before the text. This allows longer

constituents to wrap across two or all three columns, where desired, so that the material takes

up fewer rows and/or does not require columns as wide as it would otherwise. This approach

works in practice for a static chart, but if it becomes necessary to change the font size, adjust

column widths, or edit the text, the line breaking and spacing has to be redone by hand in

30 Some differences between the original Hans chart and the rendered HTML version are due to differences of
preference between the original chart author (who also consulted in the modeling and rendering of the HTML
version) and the colleague who first created the word processor table version of the chart. In some of the
formatting and layout decisions, the need to conserve space played a role. The version shown in Fig. 5 was
modified from the first word processor version to conform more closely to the original chart author’s intent.

81

order to restore reasonable line wrapping and alignment of text with headers. The abstract

chart for Little Hans, by contrast, models the “S”, “P”, and “O, etc.” columns as separate

columns, and there is no provision for text to overflow across the columns. The result is that

while the chart may take up more space in some configurations, the benefit of flexible

rendering, and the freedom to make changes in the chart without time-consuming manual

cleanup afterwards, outweigh the cost in space. Because of this flexibility, experimentation

with different chart dimensions is greatly facilitated, and the chances of finding a config-

uration that suits the material and the space available are increased.

It may also be noted that horizontal lines are not used in the original “Hans” chart to

separate rows within sentences (although one early version had them in some places). The

abstract chart rendering stylesheet produces horizontal lines between all adjacent rows,

eliminating the occasional ambiguity between local word wrapping and row succession as

discussed in §5.4.

In sentence 1, in the “O, Comp, Others” column, the original chart has an intentional

line break between “grey” and “over,” rather than allowing the text to wrap wherever it ran

out of space to go on. The motivation for this is that where possible, it is visually preferable

for each linguistic unit (in this case, the phrase “over old Strasbourg”) to be rendered on one

line rather than being split over a line break. This kind of advanced layout control could be

achieved with a rendering stylesheet that produces XSL-FO output. However, for the scope

of this thesis, in which the stylesheet produces the simpler HTML output, it was decided that

only ordinary word wrapping would be supported. In consultation with the chart’s author, it

82

was decided that keeping each phrase together on a line was not an essential feature of the

presentation form of the chart.

None of the three original charts uses row numbering (a, b, etc. for multiple rows

within a sentence). This feature was added to the rendering step to demonstrate that it could

be done, since it can be useful for referring to text in the chart. Neither sentence nor row

numbering requires any additional information in the abstract chart; the rendering step simply

counts the sentences and rows that are there. A setting in the aesthetic configuration

component allows row numbering to be turned on or off.

5.7 Summary

This chapter has demonstrated the use of the abstract chart model by presenting an

encoding of the original charts into XML documents conforming to the abstract chart DTD, a

description of an XSL stylesheet for rendering these documents, and the final HTML

presentation forms. Chapter 6 summarizes our findings and suggests directions for future

research.

83

CHAPTER 6.

CONCLUSIONS

This chapter enumerates some possible directions for future work, starting with the

generation of an abstract chart from an annotated text. Then it summarizes the results of this

thesis.

6.1 Generating an abstract chart from annotated text

Rendering an abstract chart into a presentation form is only part of the task of helping

a linguist produce a visually appealing and reusable display. There is also a need for a

convenient way to produce the abstract chart in the first place. The abstract chart instances

described so far were created by hand in XML. This requires a knowledge of XML and of

XML editing tools, and is time-consuming and error-prone. In section 1.3 it was mentioned

that an abstract chart might be created using a spreadsheet-like chart creation program, or it

might be generated automatically from an annotated text. In this section we look briefly at

how an abstract chart was generated from a sample annotated text by means of an XSL

stylesheet.

An annotated text (see footnote 12 on linguistic annotation) is a document containing

text along with linguistic annotations that encode descriptive or analytic information

provided by a linguist. Annotations can include grammatical tagging, parse trees, links from

words to a lexicon, freeform notes, participant identification, and other items. The

84

information in an annotated text is chart-neutral. That is, many charts (and other views) could

be generated from a given annotated text: one emphasizing the tense/mode/aspect of verbs,

another aligning the constituents of clauses to highlight variations in order, and another

tracing the occurrence of “mystery particles.”31 Each of these desired views could be a basis

for generating a distinct abstract chart from the same annotated text. Though the source text

and annotations would be the same, each abstract chart would contain a different subset of

the information in the annotated text.

As part of this thesis project, sample annotated text DTDs were designed (in two

parts: text.dtd and annotations.dtd 32), and a small annotated text was encoded in

XML (bala-tawip-text.xml and bala-tawip-annotations.xml) using these

DTDs. Then a prototype XSL stylesheet was written to extract the data from the annotated

text relevant to a constituent chart and transform it into an abstract chart XML document

(bala-tawip-cc.xml). These files are not presented here but can be found at Huttar

(2003).

The principal annotations in the bala-tawip-annotations.xml document are

constituent-type and participant-reference annotations. The former associate a range of text

with a particular constituent type (from a fixed set of possible values), which allows the text

to be mapped into a particular column as the abstract chart is created. The latter are mapped

to spans with featureID s corresponding to the referenced participants. The following

31 Particles “whose meanings at the sentence level are either unclear or variable” (Longacre and Hwang, n.d.,
§1.2).
32 Annotations are modeled using standoff markup, i.e. markup separated from the text, mainly due to the desire
to allow the text to be updated and corrected independently of the annotation without breaking the links
between the two. See Thompson and McKelvie (1997:§1) for more on the advantages of standoff markup.

85

diagram (Fig. 23) shows the role of the annotations and text in the broader framework. The

dashed rectangle at the right illustrates the process as described up to this point in the thesis.

Note that the generation of the abstract chart involves another configuration

document, cc-config-lars.xml . This file consists mainly of mappings from annotations

(particularly constituent-type annotations) to column IDs.

Abstract chart document

bala-tawip-cc.xml

(cc.dtd)

Annotations

bala-tawip-annotations.xml
(annotations.dtd)

Base text
bala-tawip-text.xml

(text.dtd)

Constituent chart display

(in HTML or PDF)

bala-tawip-cc.html

XSL stylesheet extracts

data needed for

constituent chart

annotations-to-

cc.xsl

Chart configuration data

cc-config-lars.xml
(cc-config.dtd)

XSL stylesheet renders chart

into presentation format

cc-to-html.xsl

User enters annotations
via graphical interface

Viewing via browser

Fig. 23. Broader framework, including annotated text.

6.2 Future directions

There are a number of ways that the abstract chart information model and

presentation model could be developed further or built upon. In the next three subsections,

ways to improve the information model are presented, followed by possibilities for

86

improving the presentation model, and finally, tasks that go beyond the abstract constituent

chart information and presentation models. These items are numbered as a continuation of

the requirements list (§3.3).

6.2.1 Enhancements to the information model.

21. Normalization of DTD. Currently the DTD for the abstract chart information model

includes several redundant attributes that make processing of the chart simpler or

more efficient (e.g. cell/@glossed , column/@position , and column/@rank).

It would be desirable for the DTD to be normalized by getting rid of this redundant

data. The result would be a simpler DTD that would make it easier for people or

software to create abstract charts. Then an XSLT stylesheet could be created to

transform a normalized abstract chart into a denormalized one (i.e. to add redundant

attributes so that the chart is easier to process). The denormalized chart could then be

rendered by the existing stylesheets into presentation forms. This design resembles

the processing model described in Bow, Hughes, and Bird (2003:Fig. 29), in that the

abstract document is transformed into an intermediate-level document before the

rendering step occurs.

22. Support for right-to-left scripts. Since significant work has been and continues to

be done on discourse analysis with regard to Hebrew33, not to mention the many

languages that use Arabic-based scripts, it would be important for a constituent chart

model to support right-to-left (RTL) text and layout. Further study of this issue is

33 E.g. Longacre (1989). Robert Longacre and Andrew Bowling are currently working on a discourse modular
grammar of biblical Hebrew.

87

required, but in the simplest case, where the LTR/RTL directionality of all columns is

uniform, the only required modification to the information model would be the

addition of a chart-global parameter specifying the chart’s directionality. Hopefully it

would not be necessary for different groups of columns within the same chart to have

different layout directions. For mixed LTR and RTL text (bidirectional text) within a

cell, no extension to the information model is needed assuming that the directionality

information associated with each Unicode character can be relied upon. (See also

paragraph 27 below.)

23. Column descriptions. While the analytic configuration for a chart includes a caption

for each column or column group, there may be a need for more extensive

documentation of how each column or column group is used in a project. This need

increases when, in the interests of saving space (a perennial pressure in discourse

charting), a column is used for more than one purpose, but the caption does not have

space to describe all of them. This would be especially important for a distributed

project where several researchers, sharing an analytic configuration, are charting texts

in ways meant to be directly comparable when the charting is done. If the analytic

configuration included a specific description of the intended usage of each column

and column-group, then constituent charting software could make use of this

description to provide help during charting (e.g. via popup help windows) . The

descriptions could also be included in a “Chart Notes” section of a detailed

presentation view of the chart, helping a later reader understand what was intended by

the placement of a constituent in a particular column.

88

24. Analysis language. In connection with the above, it may be desirable to encode

somewhere in the abstract chart (perhaps in the metadata) the analysis language and

the language under study in the chart. The Dublin Core <language> element, the

OLAC Metadata standard, and XML’s xml:lang attribute provide starting points for

how to model this information. The analysis language could then be taken as the

default for column captions, analytical notes, glosses, and so on; and the language

under study would be the default for the vernacular text.

25. Morpheme: affix vs. stem. It may be desirable to model morphemes more richly, to

distinguish stems from affixes, for example. This would enable the rendering process

to be more intelligent about rendering morphemes in interlinear text (IT), e.g. to place

a hyphen on the affix rather than on the stem in the following IT fragment:

bala -si

child 3Posd

With the possible addition of a few small enhancements like the above, it seems

likely that this vernacular/gloss model for IT would prove sufficient for most uses

within a constituent chart, where IT use is typically limited. However if one were to

require more complex IT, then rather than extend the information model for

constituent charts to also fully encompass IT, it would be desirable to use an existing

information model of IT such as those developed in Schmidt (2002) and Bow,

Hughes, and Bird (2003).

26. Styles configurable in data. It would be helpful to be able to modify the appearance

of styles to a large extent by modifying the aesthetic configuration, instead of

89

modifying the XSL stylesheet (in other words, the style data should be separated from

the stylesheet design). This would apply to span styles and moved text (source and

destination); such a separation is already supported for row and column styles and

zero marker rendering. Note that formatting would have to be specified in an output-

language-neutral way, i.e. a way that can be translated by a stylesheet into whatever

output format language might be used. However it should also be possible to have

different styles for the various kinds of output, e.g. for HTML vs. PDF, and for

monochrome vs. color, and screen vs. paper. For this purpose, the style data in the

aesthetic configuration might serve as defaults, which can be overridden by the

various stylesheets. Or one could design a mechanism whereby a main, default

aesthetic configuration is inherited and overridden by other aesthetic configuration

documents.

6.2.2 Enhancements to the presentation model.

27. Right-to-left rendering. As mentioned in paragraph 22, RTL text would necessitate

some changes in the models—most of them in the presentation model. When an

abstract chart is identified as being RTL, the presentation model should map the

logical order of columns in the analytic configuration to right-to-left order in the

presentation form. A consequence of this column layout order is that cells too will be

laid out right-to-left. Any mixture of LTR notes (e.g. “[in O]”) with RTL text will

require somewhat more complex processing in order to be displayed correctly.

Flexible rendering support for non-Roman text, such as that being worked on in

Project SILA (Tang 2003)—an integration of the Graphite extensible text rendering

90

system (Lyons 2001) into the Mozilla browser—will make graceful rendering of RTL

and bidirectional text using standard presentation languages considerably easier.

28. Metadata in generated output. Because the generated presentation output can be

saved in a file that could get separated from its sources, it would be helpful to embed

more metadata in the output presentation form. For example when generating HTML,

one could embed metadata in the document using <meta> elements (which are

usually invisible when viewing the document in a browser).

29. Compatibility with more browsers. The output HTML from the rendering

stylesheet currently works only in Internet Explorer. It should be verified that the

generated HTML is using only standard features, and if it is not, it should be fixed.

Ideally, the output should work with most standards-compliant browsers.

30. XSL-FO output. Design rendering stylesheets to use XSL-FO for output instead of

HTML. This would allow more flexible wrapping of interlinear text. (These

stylesheets would complement the HTML stylesheets; HTML might still be

preferable for web browsing and interactive rendering because of its relative

rendering speed.) Using XSL-FO for output would provide greater control over layout

in several other ways as well, such as controlling pagination, which would make it

more suitable than HTML for rendering in print.

6.2.3 Beyond the abstract chart model.

31. Abstract chart editor. Develop a software tool for creating and editing abstract

charts (a “discourse charting spreadsheet”). Such software should include templates

91

for analytic and aesthetic configurations, designed to be useful starting points for a

charting project.

32. Generate abstract chart from standard annotated text. Following the prototype

described in §6.1, instead of the provisional annotated text model, select a standard

annotated text model such as XCES, that can accommodate the kinds of annotation

needed for constituent charting; preferably one with good, free, existing tools that do

the type of text annotation required. Develop a stylesheet that produces an abstract

chart from this standard annotated text format.

33. Support Thurman charts. Explore how the abstract constituent chart model could

be extended to produce an information model for Thurman charts (Grimes 1975:33),

a.k.a. information charts (Hohulin 2001). A simple Thurman chart has been encoded

and rendered using the abstract constituent chart DTD and XSL stylesheet. While the

adequacy of this approach has not been verified for Thurman charts in general, this

small experiment suggests that little more would be required in order to handle

Thurman charts as well as constituent charts.

6.3 Results

This thesis has defined an information model for an abstract constituent chart. The

model is expressed as an XML DTD. This model has been shown to be adequate for

capturing the information communicated by three representative charts. These charts were

encoded in XML using the abstract chart DTD. A presentation model for rendering the charts

into presentation forms was developed and expressed as an XSL stylesheet. The rendered

92

charts are displayed in Fig. 20-Fig. 22. The information and presentation models were

corrected and updated until the authors of the original charts were satisfied with the results.

By providing both an information model and a separate presentation model, this

thesis lays the groundwork for specialized software that processes the actual information

involved, not just a visual form of it, while providing multiple, configurable views of the

data. This property greatly increases the potential to reuse, share, and repurpose both the

software and the results of discourse analysis research.

93

REFERENCES CITED

Association for Linguistic and Literary Computing. 2003. Literary and Linguistic
Computing. Oxford University Press. Available: http://www3.oup.co.uk/litlin/scope/.
6 July 2003.

Bański, Piotr. 2001. “The proposed encoding scheme for the IPI PAN corpus.” IPI PAN

Reports 936, December 2001. Available:
http://dach.ipipan.waw.pl/CORPUS/banski_raport.rtf. 8 July 2003.

Bateson, M. C. 1964. “Morphological Continuity in Poetry.” Paper presented at the summer
meeting of the Linguistic Society of America.

Beekman, John, John C. Callow, and Michael F. Kopesec. 1981. The Semantic Structure of

Written Communication. Dallas: SIL.

Benveniste, E. 1974. Problemès de Linguistique Générale, vol. 2. Paris: Gallimard.

Berners-Lee, Tim, and D. Connolly. 1995. “Hypertext Markup Language - 2.0. Request for
Comments 1866.” Internet Engineering Task Force. Available:
http://www.ietf.org/rfc/rfc1866.txt. 5 July 2003.

Bird, Steven and Mark Liberman. 1999a. “Annotation graphs as a framework for
multidimensional linguistic data analysis.” Towards Standards and Tools for

Discourse Tagging, Proceedings of the Workshop:1-10. Association for
Computational Linguistics.

---. 1999b. “A formal framework for linguistic annotation.” Technical Report MS-CIS-99-01.
Linguistic Data Consortium. Philadelphia: University of Pennsylvania.

---. 5 Dec. 2001 [last update]. “Linguistic Annotation.” Linguistic Data Consortium.
Available: http://www.ldc.upenn.edu/annotation/.

94

Bird, Steven, Kazuaki Maeda, Xiaoyi Ma, Haejoong Lee, Beth Randall, and Salim Zayat.
2002. “TableTrans, MultiTrans, InterTrans and TreeTrans: Diverse Tools Built on the
Annotation Graph Toolkit.” Proceedings of the Third International Conference on

Language Resources and Evaluation, Paris: European Language Resources
Association.

Bird, Steven and Gary F. Simons. 2003. “Seven Dimensions of Portability for Language
Documentation and Description.” To appear in Language 79. Preprint available:
http://www.language-archives.org/documents/portability.pdf. 15 July 2003.

Bos, Bert. 13 Nov. 2001 [last update]. “XML in 10 points.” W3C. Available:
http://www.w3.org/XML/1999/XML-in-10-points.

Bow, Cathy, Baden Hughes, and Steven Bird. 2003. “Towards a General Model of Interlinear
Text.” Paper presented at EMELD Language Digitization Project Conference 2003,

Workshop on Digitizing and Annotating Texts and Field Recordings. LSA Institute,
Michigan State University, July 11th-13th 2003. Available:
http://saussure.linguistlist.org/cfdocs/emeld/workshop/2003/bowbadenbird-
paper.html.

Bray, Tim, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler, eds. 6 Oct. 2000.
Extensible Markup Language (XML) 1.0 (Second Edition). W3C. Available:
http://www.w3.org/TR/REC-xml.

Burnard, Lou. 8 Oct. 1999. TEI Pizza Chef. TEI Consortium. Available: http://www.tei-
c.org/pizza.html.

Carletta, Jean, David McKelvie, Amy Isard, Andreas Mengel, Marion Klein, and Morten
Baun Møller. 2002. “A Generic Approach to Software Support for Linguistic
Annotation Using XML.” In G. Sampson and D. McCarthy (eds.), Readings in

Corpus Linguistics, London and NY: Continuum International. Available:
http://www.cogsci.ed.ac.uk/~jeanc/readings-in-corpling.final.webformat.pdf.

Chamberlin, Donald Dean, Helmut F. Hasselmeier, Dieter P. Paris. 1988. “Defining
Document Styles for WYSIWYG Processing.” In J.C. van Vliet (ed.), Document

Manipulation and Typography. Proceedings of the International Conference on

Electronic Publishing, Document Manipulation and Typography, Nice (France),

April 20-22 1988. Cambridge Series on Electronic Publishing. Cambridge:
Cambridge University Press. 121-137.

95

Clark, James, ed. 16 Nov. 1999. “XSL Transformations (XSLT) Version 1.0.” W3C.
Available: http://www.w3.org/TR/xslt.

Coombs, James H., Allen H. Renear, and Steven J. DeRose. 1987. “Markup Systems and the
Future of Scholarly Text Processing.” Communications of the Association for

Computing Machinery 30: 933-947. Available: http://www.oasis-
open.org/cover/coombs.html.

Cover, Robin. 10 June 2003 [last update]. “Patents and Open Standards.” The Cover Pages.

OASIS. Available: http://xml.coverpages.org/patents.html.

Cromack, Robert E. 1968. Language Systems and Discourse Structure in Cashinawa.
Hartford Studies in Linguistics 23. Hartford: Hartford Seminary Foundation.

Dashofy, Eric M., André van der Hoek, and Richard N. Taylor. “A Highly-extensible, XML-
Based Architecture Description Language.” In Proceedings of the Working

IEEE/IFIP Conference on Software Architectures (WICSA 2001), Amsterdam,
Netherlands. Available: http://www.ics.uci.edu/~edashofy/papers/wicsa2001.pdf.

Day, David, John Aberdeen, Lynette Hirschman, Robyn Kozierok, Patricia Robinson and
Marc Vilain. 1997. “Mixed-Initiative Development of Language Processing
Systems.” In Fifth Conference on Applied Natural Language Processing, Association

for Computational Linguistics, 31 March-3 April 1997, Washington, D.C. Available:
http://www.mitre.org/tech/alembic-workbench/ANLP97-bigger.html

Dooley, Robert A. and Stephen H. Levinsohn. 2001. Analyzing Discourse: a Manual of Basic

Concepts. Dallas: SIL International.

Dundes, Alan. 1962. “From Etic to Emic Units in the Structural Study of Folktales.” Journal

of American Folklore 75, 95-105.

---. 1963. “Structural Typology in North American Indian Folktales.” Southwestern Journal

of Anthropology 19, 121-30.

---. 1964. The Morphology of North American Indian Folktales. Helsinki: Academia
Scientiarum Fennica.

Dybkjær, L. and N.O. Bernsen. 2000. “Towards Corpus Annotation Standards: the MATE
Workbench.” Proceedings of the COCOSDA Workshop 2000, Beijing, China, 2000.
31-55. Available: http://www.tsc.uvigo.es/~carmen/bego/data/COCOSDA-
20.10.2000-F.pdf. 10 July 2003.

96

EAGLES. 20 March 2000 [last update]. “Corpus Encoding Standard, Version 1.5.” Expert
Advisory Group on Language Engineering Standards (EAGLES). Available:
http://www.cs.vassar.edu/CES/CES1.html.

Fallside, David, ed. 2 May 2001. “XML Schema Part 0: Primer.” W3C. Available:
http://www.w3.org/TR/xmlschema-0/.

Givón, Talmy, ed. 1994. Voice and Inversion. Amsterdam: John Benjamins.

Gleason, H.A., Jr. 1964. “The Organization of Language: a Stratificational View.”
Monograph Series on Languages and Linguistics 17: 75-95. Washington, D.C.:
Georgetown University Press.

---. 1968. “Contrastive Analysis in Discourse Structure.” In J.E. Alatis (ed.), Contrastive

Linguistics and Its Pedagogical Implications. Report of the Nineteenth Annual Round

Table Meeting on Linguistics and Language Studies. Monograph Series on

Languages and Linguistics 21:39-63. Washington, D.C.: Georgetown University
Press.

Goldfarb, Charles F. 1973. Design Considerations for Integrated Text Processing Systems.
Cambridge, MA: IBM Corporation Cambridge Scientific Research Center.

---. 1996. “The Roots of SGML—A Personal Recollection.” In SGML Source Home Page.
Available: http://www.sgmlsource.com/history/roots.htm. 4 July 2003.

Google. 2003. Google Search: sgml. Available: http://www.google.com/search?q=sgml. 6
July 2003.

Grimes, Joseph E. 1965. “Linguistic and Anthropological Projects Using the Computer.” In
D. Hymes (ed.), The Use of Computers in Anthropology, The Hague: Mouton. 515-
516.

---. 1975. The Thread of Discourse. The Hague: Mouton.

Gromov, Gregory. 2002. “History of Internet and WWW: The Roads and Crossroads of
Internet History.” NetValley. Available: http://www.netvalley.com/intvalstat.html. 9
July 2003.

97

Harbin, Duane. 1998. “Fiat Lux: The Electronic Word.” In Valerie R. Hotchkiss and Charles
C. Ryrie (eds.), Formatting the Word of God: the Charles Caldwell Ryrie collection.
An exhibition at Bridwell Library, Perkins School of Theology, Southern Methodist
University, October 1998 - January 1999. Available:
http://www.smu.edu/bridwell/publications/ryrie_catalog/xiii_1.htm.

Harper, Kenneth. 1964. “Inter-Sentence Connectivity in Written Discourse.” Paper presented
at the meeting of the Association for Machine Translation and Computational

Linguistics.

Harris, Zellig. 1952. “Discourse Analysis.” Language 28: 1-30.

Hohulin, E. Lou. 2001. Discourse Analysis: A Manual for a Linguistic-Translation

Workshop. Unpublished ms.

Hopper, Paul J. and Sandra Thompson. 1980. “Transitivity in Grammar and Discourse.”
Language 56: 251-299.

Huttar, Lars. 18 August 2003 [last update]. “Constituent Charting for Discourse Analysis.”
Available: http://purl.oclc.org/NET/huttar/lars/ma-thesis.

Hwang, Shin Ja J. 1989. “Recursion in the Paragraph as a Unit Discourse Development.”
Discourse Processes 12: 461-477.

---. 1993. Approaching a Narrative: Charting and Chunking. Unpublished ms.

---. 1997. “A Profile and Discourse Analysis of an English Short Story.” Language Research

33 no. 2: 293-320.

Ide, Nancy and Laurent Romary. 2003. “Encoding Syntactic Annotation.” In Anne Abeillé
(ed.), Building and Using Parsed Corpora. Dordrecht: Kluwer. Available:
http://www.cs.vassar.edu/~ide/papers/ide-romary.ps.

Ide, Nancy and Keith Suderman. 2003. “XCES: Corpus Encoding Standard for XML,
Version 0.2.” Available: http://www.cs.vassar.edu/XCES/.

InfoWorld. 2003. InfoWorld Search. Available:
http://search.infoworld.com/servlet/search?q=xml&r=all&s=0&t=10. 6 July 2003.

98

Jacobson, S. N. 1964. “Paragraph Structure as an Approach to Mechanized Discourse
Analysis.” Paper presented at the meeting of the Association for Machine Translation

and Computational Linguistics.

Lagoze, Carl, et al., eds. 10 June 2002 [last update]. “Open Archives Initiative Frequently
Asked Questions. Open Archives Initiative.” Available:
http://www.openarchives.org/documents/FAQ.html.

Lakoff, George P. 1964. “Structure Above the Sentence Level.” Paper presented at the
summer meeting of the Linguistic Society of America.

Laprun, Christophe, Jonathan G. Fiscus, John Garofolo, and Sylvain Pajot. 2002. “A
Practical Introduction to ATLAS.” Paper presented at the 3rd International

Conference on Language Resources and Evaluation (LREC), Las Palmas.

Lasilla, Ora and Ralph R. Swick, eds. 22 February 1999. “Resource Description Framework
(RDF) Model and Syntax Specification.” W3C. Available:
http://www.w3.org/TR/REC-rdf-syntax/.

Leech, Geoffrey, Martin Weisser, Andrew Wilson and Martine Grice. 1998. “LE-EAGLES-
WP4-4: Survey and Guidelines for the Representation and Annotation of Dialogue.”
In D. Gibbon, I. Mertins, and R.K. Moore (eds.), Handbook of Multimodal and

Spoken Dialogue Systems: Resources, Terminology and Product Evaluation, Boston:
Kluwer. 1-101. Available: http://www.ling.lancs.ac.uk/eagles/delivera/wp4final.htm.

Lie, Håkon Wium and Bert Bos. 11 Jan. 1999 [last update]. “Cascading Style Sheets, Level
1.” W3C. Available: http://www.w3.org/TR/1999/REC-CSS1-19990111. 24 July
2003

Longacre, Robert E. 1964. Grammar Discovery Procedures: A Field Manual. Janua

Linguarum, series minor 33. The Hague: Mouton.

---. 1965. “Some Fundamental Insights of Tagmemics.” Language 41: 65-76.

---. 1968. Discourse, Paragraph, and Sentence Structure in Select Philippine Languages, vol.
1. Santa Ana, CA: SIL.

---. 1972. Hierarchy and Universality of Discourse Constituents in New Guinea Languages,
2 vols. Washington, D.C.: Georgetown University Press.

---. 1979. “Why We Need a Vertical Revolution in Linguistics.” LACUS Forum 5.247-70.

99

---. 1981. “A Spectrum and Profile Approach to Discourse Analysis.” Text 1.337-59.

---. 1989. Joseph: A story of divine providence: A text theoretical and textlinguistic analysis

of Genesis 37 and 39-48. Winona Lake: Eisenbrauns.

---. 1990. Storyline Concerns and Word-order Typology in East and West Africa. Studies in

African Linguistics, supplement 10. Los Angeles: The James S. Coleman African
Studies Center & Dept. of Linguistics, University of California.

--. 1992. “Natural Text Processing and Text Meaning.” In Maxim Stamenov (ed.), Current

Advances in Semantic Theory. Current issues in linguistic theory, 73. Amsterdam:
John Benjamins. 521-34.

---. 1993. “Paul Ricoeur’s Philosophy and Textlinguistic Analysis.” In Peter A. Reich (ed.),
The Nineteenth LACUS Forum 1992. Illinois: Linguistic Association of Canada and
the United States. 47-55.

---. 1996. The Grammar of Discourse. 2nd ed. New York: Plenum Press.

Longacre, Robert E. and Shin Ja J. Hwang. n.d. Discourse Analysis/Textlinguistics: a Field

Manual.

---. 1994. “A Textlinguistic Approach to the Biblical Hebrew Narrative of Jonah.” In Robert
D. Bergen (ed.), Biblical Hebrew and discourse linguistics. Dallas: SIL. 336-58.

Longacre, Robert E. and Stephen H. Levinsohn. 1978. “Field analysis of discourse.” In
Wolfgang U. Dressler (ed.), Current Trends in Textlinguistics. Berlin: de Gruyter.
103-22.

Longacre, Robert E. and Frances M. Woods, eds. 1976-77. Discourse Grammar: Studies in

Indigenous Languages of Colombia, Panama, and Ecuador, 1-3. SIL Publications in
Linguistics and Related Fields, 52(1-3). Dallas: SIL and the University of Texas at
Arlington.

Loriot, James, and Barbara Hollenbach. 1970. “Shipibo Paragraph Structure.” Foundations of

Language 6: 43-66.

Lyons, Melinda. 2001. "Graphite and WorldPad: Tools for writing the World's Other
Languages." TechKnowLogia 3 No. 6:51-54. Available:
http://www.techknowlogia.org/TKL_active_pages2/CurrentArticles/main.asp?FileTy
pe=PDF&ArticleID=349

100

Mann, W. C., and S. A. Thompson. 1986. “Relational Propositions in Discourse.” Discourse

Processes 9: 57-90.

Miller, Eric, ed. 12 May 2003. “Semantic Web Activity Statement.” W3C. Available:
http://www.w3.org/2001/sw/Activity.

National Institute of Standards and Technology. 6 Feb. 2003 [last update]. “ATLAS project:
ATLAS overview.” Available: http://www.nist.gov/speech/atlas/overview.html.

O’Donnell, Matthew B., Stanley E. Porter, and Jeffrey T. Reed. 2001. “OpenText.org: An
Experiment in Internet-based Collaborative Humanities Scholarship.” Paper presented
at 2001 Joint International Conference of the ACH and ALLC, New York University,
15 June 2001.

O’Donnell, Michael. 2000. “RSTTool 2.4: A Markup Tool for Rhetorical Structure Theory.”
Proceedings of the International Natural Language Generation Conference

(INLG'2000), 13-16 June 2000, Mitzpe Ramon, Israel. 253-256.

Partridge, Kathryn J. 1995. “A Discourse Study of Tense-Aspect in Narrative Sections of
Hebrew Poetry.” Master’s thesis, University of Texas at Arlington.

Pickett, Velma B. 1959. The Grammatical Hierarchy of Isthmus Zapotec, Dissertation.
University of Michigan.

Pike, Kenneth L. 1954. Language in Relation to a Unified Theory of the Structure of Human

Behavior. Part I. Glendale, CA: SIL.

---. 1964a. “Beyond the Sentence.” College Composition and Communication 15: 129-35.

---. 1964b. “Discourse Analysis and Tagmeme Matrices. “Oceanic Linguistics 3: 5-25.

---. 1967. Language in Relation to a Unified Theory of the Structure of Human Behavior.

Janua Linguarum, series maior, 24. The Hague: Mouton.

Propp, Vladimir. 1968. Morphology of the Folktale. 2nd ed. Trans. Lawrence Scott. Austin:
University of Texas Press.

101

Quick, Philip. 1996. “Multilinear Discourse Analysis Software Demonstration.” In H.
Andrew Black, Alan Buseman, David Payne, Gary F. Simons (eds.), Proceedings of

the 1996 General CARLA Conference, November 14-15. Waxhaw, NC/Dallas, TX:
JAARS and SIL. 291-309.

Raymond, Eric S. 2003. “The Open Source Case for Customers.” Open Source Initiative.
Available: http://www.opensource.org/advocacy/case_for_customers.php. 17 June
2003.

Reid, Aileen, Ruth Bishop, Ella Marie Button, and Robert E. Longacre. 1968. Totonac: from

Clause to Discourse. SIL Publications in Linguistics 17. Norman: SIL of the
University of Oklahoma.

Schiffrin, Deborah, Deborah Tannen, and Heidi E. Hamilton, eds. 2001. The Handbook of

Discourse Analysis. Oxford: Blackwell Publishers.

Schmidt, Thomas. n.d. “Visualizing Linguistic Annotation as Interlinear Text.” To appear in
Arbeiten zur Mehrsprachigkeit (Working Papers in Multilingualism), Serie B.
Hamburg.

SGML Users’ Group. 11 June 1990. “A Brief History of the Development of SGML.”
Available: http://www.sgmlsource.com/history/sgmlhist.htm.

Simons, Gary F. 1993. “Specifications for a User Requirements Document.” In CELLAR

Project Status Report #7. Unpublished internal document.

---. 1997a. “Conceptual Modeling Versus Visual Modeling: a Technological Key to Building
Consensus.” Computers and the Humanities 30, no. 4: 303-319. Available:
http://www.sil.org/cellar/ach94/ach94.html.

---. 1997b. “PTEXT: A Format for the Interchange of Parsed Texts Among Natural Language
Processing Applications.” SIL Electronic Working Papers 1997-008, December 1997.
Available: http://www.sil.org/silewp/1997/008/silewp1997-008.html

---. 1998. “The Nature of Linguistic Data and the Requirements of a Computing Environment
for Linguistic Research. In John M. Lawler and Helen Aristar Dry (eds.), Using

Computers in Linguistics: a Practical Guide, London and New York: Routledge. 10-
25.

Simons, Gary F. and Stephen Bird, eds. 11 Dec. 2002 [last update]. “OLAC Metadata.”
Available: http://www.language-archives.org/OLAC/metadata.html.

102

Simons, Gary F. and John V. Thomson. 1995. “Multilingual Data Processing in the CELLAR
Environment.” Paper presented at Linguistic Databases, 23-24 March 1995,
University of Groningen. Available: http://www.sil.org/cellar/mlingdp/mlingdp.html.

Sol, Selena. 8 March 1999. “History of XML.” Web Developer’s Virtual Library. Available:
http://wdvl.internet.com/Authoring/Languages/XML/Tutorials/Intro/history.html.

Sperberg-McQueen, C. M. and L. Burnard, eds. 1994. Guidelines for Electronic Text

Encoding and Interchange (TEI P3). Chicago and Oxford: ACH/ACL/ALLC.

---, eds. 2002. TEI P4: Guidelines for Electronic Text Encoding and Interchange. Oxford:
TEI Consortium. Available: http://www.tei-c.org/P4X/.

Spielmann, Kent. 2000. A Discourse Analysis Tool Wishlist. Unpublished ms.

Stennes, Leslie. 1969. Participant Identification in Adamawa Fulani. Hartford, Connecticut:
Hartford Seminary Foundation.

Stutzman, Verna. 2003. “Lexical Database and Interlinear Text Tools.” Unpublished
manuscript.

Syntext. 2003. “Syntext Serna: Portable True WYSIWYG XML Editor.” Available:
http://www.syntext.com/products/serna/index.htm. 25 June 2003.

Taber, Charles R. 1966. The Structure of Sango Narrative. Hartford, CT: Hartford Seminary
Foundation.

Tang, Frank Yung-Fong. 2003. “Project SILA: SIL.ORG Graphite and Mozilla Integration
Project.” Available: http://sila.mozdev.org/. 22 July 2003.

TEI Consortium. 6 Jan. 2003a [revision date]. “Welcome to the TEI Website.” Available:
http://www.tei-c.org/.

---. 3 Feb. 2003b [revision date]. “What is the TEI Consortium?” Available:
http://www.tei-c.org/Consortium/index.html.

Thompson, Henry S. and David McKelvie. 1997. “Hyperlink Semantics for Standoff Markup
of Read-only Documents.” In Proceedings of SGML Europe '97, Barcelona, Spain,

May 1997. Available: http://www.ltg.ed.ac.uk/~ht/sgmleu97.html.

103

Thurman, Robert C. 1975. “Chuave medial verbs.” Anthropological Linguistics 17 no. 7:
342-52.

Vetch, P. H. 20 Sept. 2001. “Association for Literary and Linguistic Computing: Honorary
Members.” Available:
http://www.kcl.ac.uk/humanities/cch/allc/refdocs/honmems.htm.

Weber, David J. 2000. “E.g.” Paper presented at Workshop on Web-based Language

Documentation and Description, 12-15 December, 2000. Philadelphia, USA.
Available: http://www.ldc.upenn.edu/exploration/expl2000/papers/weber/weber.pdf.

Weinrich, H. 1964. Tempus: Besprochene und Erzählte Zeit. Stuttgart: Kohlhammer.

104

CURRICULUM VITAE

Lars Huttar was born in Paramaribo, Suriname on September 26, 1969, and is an

American citizen. He graduated from Duncanville High School in 1987. He received his

Bachelor of Arts degree in Computer Science from Oberlin College, Ohio in 1991. He was

employed as a software developer in Osaka, Japan and Dallas, Texas for three years.

Subsequently, he taught ESL in Central Asia for five years, serving as a Team and Country

Administrator and starting new programs at two schools.

In 1999, he entered the M.A. program in Applied Linguistics (Translation) at the

Graduate Institute of Applied Linguistics in Dallas, Texas. While studying he made

contributions to SIL International’s Language Software Development group in the area of

software development and testing. He has presented papers on his thesis work in progress at

the University of Texas at Arlington Student Conference in Linguistics, February 2003, and

at the Discourse Analysis Workshop at the International Linguistics Center in Dallas, Texas

in September 2001. He and his wife Kathryn were married on September 21, 2002.

